hkivancoral's picture
End of training
5dba6c4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9081803005008348

smids_3x_deit_small_rms_00001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8163
  • Accuracy: 0.9082

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3764 1.0 226 0.2918 0.8831
0.2061 2.0 452 0.2699 0.8998
0.0904 3.0 678 0.3139 0.8915
0.1028 4.0 904 0.4241 0.8948
0.0553 5.0 1130 0.4370 0.9032
0.0029 6.0 1356 0.6281 0.8965
0.0117 7.0 1582 0.5524 0.9065
0.0491 8.0 1808 0.6970 0.8915
0.0376 9.0 2034 0.6152 0.9065
0.0001 10.0 2260 0.7198 0.9015
0.003 11.0 2486 0.7173 0.8898
0.0001 12.0 2712 0.6506 0.9048
0.0002 13.0 2938 0.8916 0.8831
0.0132 14.0 3164 0.7369 0.8982
0.0192 15.0 3390 0.7968 0.8982
0.0001 16.0 3616 0.7098 0.9082
0.026 17.0 3842 0.7751 0.8965
0.0001 18.0 4068 0.7904 0.9015
0.0054 19.0 4294 0.6956 0.9032
0.0 20.0 4520 0.7178 0.9032
0.0008 21.0 4746 0.7487 0.9098
0.0089 22.0 4972 0.7031 0.9115
0.0027 23.0 5198 0.7177 0.9032
0.0 24.0 5424 0.7262 0.9082
0.0 25.0 5650 0.7421 0.9082
0.0001 26.0 5876 0.7360 0.9082
0.0 27.0 6102 0.7465 0.9065
0.0 28.0 6328 0.8372 0.9048
0.0 29.0 6554 0.8930 0.8898
0.0 30.0 6780 0.7924 0.9098
0.0339 31.0 7006 0.8291 0.8998
0.0 32.0 7232 0.7573 0.9032
0.0031 33.0 7458 0.7513 0.9082
0.0 34.0 7684 0.8005 0.8998
0.0 35.0 7910 0.7724 0.9065
0.0 36.0 8136 0.7954 0.9065
0.0 37.0 8362 0.7930 0.9082
0.0 38.0 8588 0.8339 0.9048
0.0 39.0 8814 0.7697 0.9115
0.0 40.0 9040 0.7910 0.9082
0.003 41.0 9266 0.7950 0.9048
0.0027 42.0 9492 0.8033 0.9048
0.0 43.0 9718 0.7969 0.9065
0.0 44.0 9944 0.8077 0.9065
0.0 45.0 10170 0.8102 0.9098
0.0 46.0 10396 0.8111 0.9082
0.0 47.0 10622 0.8142 0.9082
0.0 48.0 10848 0.8155 0.9082
0.0 49.0 11074 0.8163 0.9082
0.0 50.0 11300 0.8163 0.9082

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2