--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_small_rms_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9081803005008348 --- # smids_3x_deit_small_rms_00001_fold1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8163 - Accuracy: 0.9082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3764 | 1.0 | 226 | 0.2918 | 0.8831 | | 0.2061 | 2.0 | 452 | 0.2699 | 0.8998 | | 0.0904 | 3.0 | 678 | 0.3139 | 0.8915 | | 0.1028 | 4.0 | 904 | 0.4241 | 0.8948 | | 0.0553 | 5.0 | 1130 | 0.4370 | 0.9032 | | 0.0029 | 6.0 | 1356 | 0.6281 | 0.8965 | | 0.0117 | 7.0 | 1582 | 0.5524 | 0.9065 | | 0.0491 | 8.0 | 1808 | 0.6970 | 0.8915 | | 0.0376 | 9.0 | 2034 | 0.6152 | 0.9065 | | 0.0001 | 10.0 | 2260 | 0.7198 | 0.9015 | | 0.003 | 11.0 | 2486 | 0.7173 | 0.8898 | | 0.0001 | 12.0 | 2712 | 0.6506 | 0.9048 | | 0.0002 | 13.0 | 2938 | 0.8916 | 0.8831 | | 0.0132 | 14.0 | 3164 | 0.7369 | 0.8982 | | 0.0192 | 15.0 | 3390 | 0.7968 | 0.8982 | | 0.0001 | 16.0 | 3616 | 0.7098 | 0.9082 | | 0.026 | 17.0 | 3842 | 0.7751 | 0.8965 | | 0.0001 | 18.0 | 4068 | 0.7904 | 0.9015 | | 0.0054 | 19.0 | 4294 | 0.6956 | 0.9032 | | 0.0 | 20.0 | 4520 | 0.7178 | 0.9032 | | 0.0008 | 21.0 | 4746 | 0.7487 | 0.9098 | | 0.0089 | 22.0 | 4972 | 0.7031 | 0.9115 | | 0.0027 | 23.0 | 5198 | 0.7177 | 0.9032 | | 0.0 | 24.0 | 5424 | 0.7262 | 0.9082 | | 0.0 | 25.0 | 5650 | 0.7421 | 0.9082 | | 0.0001 | 26.0 | 5876 | 0.7360 | 0.9082 | | 0.0 | 27.0 | 6102 | 0.7465 | 0.9065 | | 0.0 | 28.0 | 6328 | 0.8372 | 0.9048 | | 0.0 | 29.0 | 6554 | 0.8930 | 0.8898 | | 0.0 | 30.0 | 6780 | 0.7924 | 0.9098 | | 0.0339 | 31.0 | 7006 | 0.8291 | 0.8998 | | 0.0 | 32.0 | 7232 | 0.7573 | 0.9032 | | 0.0031 | 33.0 | 7458 | 0.7513 | 0.9082 | | 0.0 | 34.0 | 7684 | 0.8005 | 0.8998 | | 0.0 | 35.0 | 7910 | 0.7724 | 0.9065 | | 0.0 | 36.0 | 8136 | 0.7954 | 0.9065 | | 0.0 | 37.0 | 8362 | 0.7930 | 0.9082 | | 0.0 | 38.0 | 8588 | 0.8339 | 0.9048 | | 0.0 | 39.0 | 8814 | 0.7697 | 0.9115 | | 0.0 | 40.0 | 9040 | 0.7910 | 0.9082 | | 0.003 | 41.0 | 9266 | 0.7950 | 0.9048 | | 0.0027 | 42.0 | 9492 | 0.8033 | 0.9048 | | 0.0 | 43.0 | 9718 | 0.7969 | 0.9065 | | 0.0 | 44.0 | 9944 | 0.8077 | 0.9065 | | 0.0 | 45.0 | 10170 | 0.8102 | 0.9098 | | 0.0 | 46.0 | 10396 | 0.8111 | 0.9082 | | 0.0 | 47.0 | 10622 | 0.8142 | 0.9082 | | 0.0 | 48.0 | 10848 | 0.8155 | 0.9082 | | 0.0 | 49.0 | 11074 | 0.8163 | 0.9082 | | 0.0 | 50.0 | 11300 | 0.8163 | 0.9082 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2