virc / README.md
Ibaii99's picture
Update README.md
54999c5 verified
|
raw
history blame
9.95 kB
metadata
language:
  - es
  - it
license: mit
size_categories:
  - n<1K
task_categories:
  - zero-shot-classification
  - question-answering
  - text-classification
pretty_name: VIRC
dataset_info:
  features:
    - name: annotation
      dtype: string
    - name: annotation_type
      dtype: string
    - name: annotator_id
      dtype: string
    - name: headline
      dtype: string
    - name: interval_end_at
      dtype: int64
    - name: interval_exact_highlight
      dtype: string
    - name: interval_start_at
      dtype: int64
    - name: lang
      dtype: string
    - name: text_id
      dtype: int64
  splits:
    - name: all
      num_bytes: 1150122
      num_examples: 6027
    - name: all_tags
      num_bytes: 1038949
      num_examples: 5536
    - name: gold_tags
      num_bytes: 221311
      num_examples: 1131
    - name: spa_all_tags
      num_bytes: 584111
      num_examples: 3256
    - name: ita_all_tags
      num_bytes: 454838
      num_examples: 2280
    - name: spa_all
      num_bytes: 610683
      num_examples: 3407
    - name: ita_all
      num_bytes: 539439
      num_examples: 2620
    - name: tags
      num_bytes: 817638
      num_examples: 4405
    - name: spa_tags
      num_bytes: 362800
      num_examples: 2125
    - name: ita_tags
      num_bytes: 454838
      num_examples: 2280
    - name: spa_gold_tags
      num_bytes: 102406
      num_examples: 550
    - name: ita_gold_tags
      num_bytes: 118905
      num_examples: 581
    - name: comments
      num_bytes: 111173
      num_examples: 491
    - name: spa_comments
      num_bytes: 26572
      num_examples: 151
    - name: ita_comments
      num_bytes: 84601
      num_examples: 340
  download_size: 1213163
  dataset_size: 6678386
configs:
  - config_name: default
    data_files:
      - split: all
        path: data/all-*
      - split: all_tags
        path: data/all_tags-*
      - split: gold_tags
        path: data/gold_tags-*
      - split: spa_all_tags
        path: data/spa_all_tags-*
      - split: ita_all_tags
        path: data/ita_all_tags-*
      - split: spa_all
        path: data/spa_all-*
      - split: ita_all
        path: data/ita_all-*
      - split: tags
        path: data/tags-*
      - split: spa_tags
        path: data/spa_tags-*
      - split: ita_tags
        path: data/ita_tags-*
      - split: spa_gold_tags
        path: data/spa_gold_tags-*
      - split: ita_gold_tags
        path: data/ita_gold_tags-*
      - split: comments
        path: data/comments-*
      - split: spa_comments
        path: data/spa_comments-*
      - split: ita_comments
        path: data/ita_comments-*

Vulnerable Identities Recognition Corpus (VIRC) for Hate Speech Analysis

Welcome to the Vulnerable Identities Recognition Corpus (VIRC), a dataset created to enhance hate speech analysis in Italian and Spanish news headlines. VIRC provides annotated headlines aimed at identifying vulnerable identities, dangerous discourse, derogatory mentions, and entities. This corpus contributes to developing more sophisticated hate speech detection tools and policies for creating a safer online environment. The work has been published at the Tenth Italian Conference on Computational Linguistics (CLiC-it 2024) with the name of Vulnerable Identities Recognition Corpus (VIRC) for Hate Speech Analysis. The code for the experiments performed in the paper are available in the github repo https://github.com/oeg-upm/virc.

Overview

VIRC is designed to support the study of hate speech in headlines from two languages: Italian and Spanish. It includes 880 headlines (532 Italian and 348 Spanish), collected and annotated with the following labels:

  • Named Entities: Identifies persons, locations, organizations, groups, etc. mentioned in the headline.
  • Vulnerable Identity Mentions: Labels groups such as women, LGBTQI, ethnic minorities, and migrants targeted by hate speech.
  • Derogatory Mentions: Marks phrases that are derogatory towards vulnerable groups.
  • Dangerous Speech: Highlights parts of the text perceived as potentially inciting hate or perpetuating harmful stereotypes.

Data

  • Spanish: The Spanish datasets are split into two sets, agreement and disagreement. Agreement set contains the data annotated by the two original annotators, while the disagreement set contains the news where no agreement was reached and a third annotator was needed.
  • Italian: The Italian data consists of only one set annotated by two annotators.

Annotation

The VIRC_Guidelines.pdf contains the annotation guidelines provided to annotators. This can be seen sintetized in the paper. The dataset is provided with several splits depending of which elements are included:

  • Annotations (Spanish): Annotators annotations for Spanish.
  • Annotations (Italian): Annotators annotations for Italian.
  • Gold (Spanish): Gold standard annotations for Spanish.
  • Gold (Italian): Gold standard annotations for Italian.
  • Comments (Spanish): Annotators comments for Spanish.
  • Comments (Italian): Annotators comments for Italian.

The different splits include:

Configuration Annotations (Spanish) Annotations (Italian) Gold (Spanish) Gold (Italian) Comments (Spanish) Comments (Italian) Number of Rows
all βœ… βœ… βœ… βœ… βœ… βœ… 6027
all_tags βœ… βœ… βœ… βœ… ❌ ❌ 5536
spa_all βœ… ❌ βœ… ❌ βœ… ❌ 3407
ita_all ❌ βœ… ❌ βœ… ❌ βœ… 2620
spa_all_tags βœ… ❌ βœ… ❌ ❌ ❌ 3256
ita_all_tags ❌ βœ… ❌ βœ… ❌ ❌ 2280
gold_tags ❌ ❌ βœ… βœ… ❌ ❌ 1131
spa_gold_tags ❌ ❌ βœ… ❌ ❌ ❌ 550
ita_gold_tags ❌ ❌ ❌ βœ… ❌ ❌ 581
tags βœ… βœ… ❌ ❌ ❌ ❌ 4405
spa_tags βœ… ❌ ❌ ❌ ❌ ❌ 2125
ita_tags ❌ βœ… ❌ ❌ ❌ ❌ 2280
comments ❌ ❌ ❌ ❌ βœ… βœ… 491
spa_comments ❌ ❌ ❌ ❌ βœ… ❌ 151
ita_comments ❌ ❌ ❌ ❌ ❌ βœ… 340

Usage and Information

The dataset can be loaded with:

from datasets import load_dataset
dataset = load_dataset("Ibaii99/virc")

BibTeX Entry and Citation Info

@inproceedings{IbaiArianna2024,
  author       = {Ibai Guill{\'{e}}n{-}Pacho and
                  Arianna Longo and
                  Marco Antonio Stranisci and
                  Viviana Patti and
                  Carlos Badenes{-}Olmedo},
  editor       = {Felice Dell'Orletta and
                  Alessandro Lenci and
                  Simonetta Montemagni and
                  Rachele Sprugnoli},
  title        = {The Vulnerable Identities Recognition Corpus {(VIRC)} for Hate Speech
                  Analysis},
  booktitle    = {Proceedings of the Tenth Italian Conference on Computational Linguistics
                  (CLiC-it 2024), Pisa, Italy, December 4-6, 2024},
  series       = {{CEUR} Workshop Proceedings},
  volume       = {3878},
  publisher    = {CEUR-WS.org},
  year         = {2024},
  url          = {https://ceur-ws.org/Vol-3878/49_main_long.pdf},
}

Acknowledgements

This work is supported by the Predoctoral Grant (PIPF-2022/COM-25947) of the ConsejerΓ­a de EducaciΓ³n, Ciencia y Universidades de la Comunidad de Madrid, Spain. Arianna Longo's work has been supported by aequa-tech. The authors gratefully acknowledge the Universidad PolitΓ©cnica de Madrid (www.upm.es) for providing computing resources on the IPTC-AI innovation Space AI Supercomputing Cluster.

License

This work is licensed under the MIT License. For more details, see the LICENSE file.