File size: 9,949 Bytes
c6bed88
81b83a3
 
 
c6bed88
81b83a3
 
 
 
 
 
 
c6bed88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b83a3
 
c6bed88
 
 
 
81b83a3
 
 
 
 
0f366b8
 
 
 
 
 
81b83a3
 
 
 
c6bed88
 
81b83a3
 
 
c6bed88
 
 
 
 
 
81b83a3
c6bed88
 
81b83a3
c6bed88
 
81b83a3
c6bed88
 
0f366b8
 
c6bed88
 
 
 
 
 
 
 
 
 
 
 
 
0f366b8
 
 
 
81b83a3
 
 
 
 
 
 
 
c6bed88
 
81b83a3
 
 
 
 
 
c6bed88
5070d17
 
54999c5
5070d17
 
 
 
 
 
 
 
 
ad2cffa
 
 
5070d17
 
c6bed88
1cc640f
 
 
 
 
 
c6bed88
 
3f343fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bed88
 
3f343fe
 
 
 
 
 
 
 
 
 
70a7b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5070d17
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
language:
- es
- it
license: mit
size_categories:
- n<1K
task_categories:
- zero-shot-classification
- question-answering
- text-classification
pretty_name: VIRC
dataset_info:
  features:
  - name: annotation
    dtype: string
  - name: annotation_type
    dtype: string
  - name: annotator_id
    dtype: string
  - name: headline
    dtype: string
  - name: interval_end_at
    dtype: int64
  - name: interval_exact_highlight
    dtype: string
  - name: interval_start_at
    dtype: int64
  - name: lang
    dtype: string
  - name: text_id
    dtype: int64
  splits:
  - name: all
    num_bytes: 1150122
    num_examples: 6027
  - name: all_tags
    num_bytes: 1038949
    num_examples: 5536
  - name: gold_tags
    num_bytes: 221311
    num_examples: 1131
  - name: spa_all_tags
    num_bytes: 584111
    num_examples: 3256
  - name: ita_all_tags
    num_bytes: 454838
    num_examples: 2280
  - name: spa_all
    num_bytes: 610683
    num_examples: 3407
  - name: ita_all
    num_bytes: 539439
    num_examples: 2620
  - name: tags
    num_bytes: 817638
    num_examples: 4405
  - name: spa_tags
    num_bytes: 362800
    num_examples: 2125
  - name: ita_tags
    num_bytes: 454838
    num_examples: 2280
  - name: spa_gold_tags
    num_bytes: 102406
    num_examples: 550
  - name: ita_gold_tags
    num_bytes: 118905
    num_examples: 581
  - name: comments
    num_bytes: 111173
    num_examples: 491
  - name: spa_comments
    num_bytes: 26572
    num_examples: 151
  - name: ita_comments
    num_bytes: 84601
    num_examples: 340
  download_size: 1213163
  dataset_size: 6678386
configs:
- config_name: default
  data_files:
  - split: all
    path: data/all-*
  - split: all_tags
    path: data/all_tags-*
  - split: gold_tags
    path: data/gold_tags-*
  - split: spa_all_tags
    path: data/spa_all_tags-*
  - split: ita_all_tags
    path: data/ita_all_tags-*
  - split: spa_all
    path: data/spa_all-*
  - split: ita_all
    path: data/ita_all-*
  - split: tags
    path: data/tags-*
  - split: spa_tags
    path: data/spa_tags-*
  - split: ita_tags
    path: data/ita_tags-*
  - split: spa_gold_tags
    path: data/spa_gold_tags-*
  - split: ita_gold_tags
    path: data/ita_gold_tags-*
  - split: comments
    path: data/comments-*
  - split: spa_comments
    path: data/spa_comments-*
  - split: ita_comments
    path: data/ita_comments-*
---

# Vulnerable Identities Recognition Corpus (VIRC) for Hate Speech Analysis
Welcome to the Vulnerable Identities Recognition Corpus (VIRC), a dataset created to enhance hate speech analysis in Italian and Spanish news headlines. VIRC provides annotated headlines aimed at identifying vulnerable identities, dangerous discourse, derogatory mentions, and entities. This corpus contributes to developing more sophisticated hate speech detection tools and policies for creating a safer online environment. The work has been published at the Tenth Italian Conference on Computational Linguistics (CLiC-it 2024) with the name of [Vulnerable Identities Recognition Corpus (VIRC) for Hate Speech Analysis](https://ceur-ws.org/Vol-3878/49_main_long.pdf). The code for the experiments performed in the paper are available in the github repo [https://github.com/oeg-upm/virc](https://github.com/oeg-upm/virc).

## Overview

VIRC is designed to support the study of hate speech in headlines from two languages: Italian and Spanish. It includes 880 headlines (532 Italian and 348 Spanish), collected and annotated with the following labels:
- *Named Entities*: Identifies persons, locations, organizations, groups, etc. mentioned in the headline.
- *Vulnerable Identity Mentions*: Labels groups such as women, LGBTQI, ethnic minorities, and migrants targeted by hate speech.
- *Derogatory Mentions*: Marks phrases that are derogatory towards vulnerable groups.
- *Dangerous Speech*: Highlights parts of the text perceived as potentially inciting hate or perpetuating harmful stereotypes.

## Data
  - `Spanish`: The Spanish datasets are split into two sets, *agreement* and *disagreement*. *Agreement* set contains the data annotated by the two original annotators, while the *disagreement* set contains the news where no agreement was reached and a third annotator was needed.
  - `Italian`: The Italian data consists of only one set annotated by two annotators.

## Annotation
The `VIRC_Guidelines.pdf` contains the annotation guidelines provided to annotators. This can be seen sintetized in the paper. The dataset is provided with several splits depending of which elements are included:
 - *Annotations (Spanish)*: Annotators annotations for Spanish.
 - *Annotations (Italian)*: Annotators annotations for Italian.
 - *Gold (Spanish)*: Gold standard annotations for Spanish.
 - *Gold (Italian)*: Gold standard annotations for Italian.
 - *Comments (Spanish)*: Annotators comments for Spanish.
 - *Comments (Italian)*: Annotators comments for Italian.

The different splits include:
| **Configuration**    | **Annotations (Spanish)** | **Annotations (Italian)** | **Gold (Spanish)** | **Gold (Italian)** | **Comments (Spanish)** | **Comments (Italian)** | **Number of Rows** |
|----------------------|---------------------------|---------------------------|--------------------|---------------------|------------------------|------------------------|-------------------|
| **`all`**            | βœ…                        | βœ…                        | βœ…                 | βœ…                  | βœ…                     | βœ…                     |6027                 |
| **`all_tags`**       | βœ…                        | βœ…                        | βœ…                 | βœ…                  | ❌                     | ❌                     |5536                 |
| **`spa_all`**        | βœ…                        | ❌                        | βœ…                 | ❌                  | βœ…                     | ❌                     |3407                 |
| **`ita_all`**        | ❌                        | βœ…                        | ❌                 | βœ…                  | ❌                     | βœ…                     |2620                 |
| **`spa_all_tags`**   | βœ…                        | ❌                        | βœ…                 | ❌                  | ❌                     | ❌                     |3256                 |
| **`ita_all_tags`**   | ❌                        | βœ…                        | ❌                 | βœ…                  | ❌                     | ❌                     |2280                 |
| **`gold_tags`**      | ❌                        | ❌                        | βœ…                 | βœ…                  | ❌                     | ❌                     |1131                 |
| **`spa_gold_tags`**  | ❌                        | ❌                        | βœ…                 | ❌                  | ❌                     | ❌                     |550                  |
| **`ita_gold_tags`**  | ❌                        | ❌                        | ❌                 | βœ…                  | ❌                     | ❌                     |581                  |
| **`tags`**           | βœ…                        | βœ…                        | ❌                 | ❌                  | ❌                     | ❌                     |4405                 |
| **`spa_tags`**       | βœ…                        | ❌                        | ❌                 | ❌                  | ❌                     | ❌                     |2125                 |
| **`ita_tags`**       | ❌                        | βœ…                        | ❌                 | ❌                  | ❌                     | ❌                     |2280                 |
| **`comments`**       | ❌                        | ❌                        | ❌                 | ❌                  | βœ…                     | βœ…                     |491                  |
| **`spa_comments`**   | ❌                        | ❌                        | ❌                 | ❌                  | βœ…                     | ❌                     |151                  |
| **`ita_comments`**   | ❌                        | ❌                        | ❌                 | ❌                  | ❌                     | βœ…                     |340                  |


## Usage and Information
The dataset can be loaded with:
``` python
from datasets import load_dataset
dataset = load_dataset("Ibaii99/virc")
```



## BibTeX Entry and Citation Info 
``` bibtex
@inproceedings{IbaiArianna2024,
  author       = {Ibai Guill{\'{e}}n{-}Pacho and
                  Arianna Longo and
                  Marco Antonio Stranisci and
                  Viviana Patti and
                  Carlos Badenes{-}Olmedo},
  editor       = {Felice Dell'Orletta and
                  Alessandro Lenci and
                  Simonetta Montemagni and
                  Rachele Sprugnoli},
  title        = {The Vulnerable Identities Recognition Corpus {(VIRC)} for Hate Speech
                  Analysis},
  booktitle    = {Proceedings of the Tenth Italian Conference on Computational Linguistics
                  (CLiC-it 2024), Pisa, Italy, December 4-6, 2024},
  series       = {{CEUR} Workshop Proceedings},
  volume       = {3878},
  publisher    = {CEUR-WS.org},
  year         = {2024},
  url          = {https://ceur-ws.org/Vol-3878/49_main_long.pdf},
}
```

## Acknowledgements
This work is supported by the Predoctoral Grant (PIPF-2022/COM-25947) of the ConsejerΓ­a de EducaciΓ³n, Ciencia y Universidades de la Comunidad de Madrid, Spain. Arianna Longo's work has been supported by aequa-tech.
The authors gratefully acknowledge the Universidad PolitΓ©cnica de Madrid (www.upm.es) for providing computing resources on the IPTC-AI innovation Space AI Supercomputing Cluster.

## License
This work is licensed under the MIT License. For more details, see the LICENSE file.