|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
tags: |
|
- SDQP |
|
- scholarly |
|
- citation_count_prediction |
|
- review_score_prediction |
|
configs: |
|
- config_name: acl_ocl |
|
data_files: |
|
- split: train |
|
path: "acl_ocl/*.json" |
|
--- |
|
|
|
Datasets related to the task of Scholarly Document Quality Prediction (SDQP). |
|
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability). |
|
The information that is potentially available for each sample can be found below. |
|
|
|
## ACL-OCL Extended |
|
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main). |
|
Extended with updated citation counts, references and annotated research hypothesis |
|
|
|
## OpenReview |
|
A dataset for review score and citation count prediction, obtained by parsing OpenReview. |
|
Due to licensing the dataset comes in 3 formats: |
|
|
|
1. openreview-public: Contains full information on all OpenReview submissions that are accompanied by a license. |
|
2. openreview-full-light: The full dataset excluding the parsed pdfs of the submitted papers. |
|
3. openreview-full: A script to obtain the full dataset with submissions. |
|
|
|
|
|
|
|
## Citation |
|
|
|
If you use the dataset in your work, please cite: |
|
|
|
|
|
|
|
The data model for the papers: |
|
|
|
### Paper Data Model |
|
```json |
|
{ |
|
# ID's |
|
"paperhash": str, |
|
"arxiv_id": str | None, |
|
"s2_corpus_id": str | None, |
|
|
|
# Basic Info |
|
"title":str, |
|
"authors": list[Author], |
|
"abstract": str | None, |
|
"summary": str | None, |
|
"publication_date": str | None, |
|
|
|
# OpenReview Metadata |
|
"field_of_study": list[str] | str | None, |
|
"venue": str | None, |
|
|
|
# s2 Metadata |
|
"n_references": int | None, |
|
"n_citations": int | None, |
|
"n_influential_citations": int | None, |
|
"open_access": bool | None, |
|
"external_ids": dict | None, |
|
"pdf_url": str | None, |
|
|
|
# Content |
|
"parsed_pdf": dict | None, |
|
"parsed_latex": dict | None, |
|
"structured_content": dict[str, Section], |
|
|
|
# Review Data |
|
"openreview": bool, |
|
"decision": bool | None, |
|
"decision_text": str | None, |
|
"reviews": list[Review] | None, |
|
"comments": list[Comment] | None, |
|
|
|
# References |
|
"references": list[Reference] | None, |
|
"bibref2section": dict, |
|
"bibref2paperhash": dict, |
|
|
|
# Hypothesis |
|
"hypothesis": dict | None |
|
} |
|
``` |
|
|
|
### Author Data Model |
|
```json |
|
{ |
|
"name":str, |
|
"affiliation": { |
|
"laboratory": str | dict | None, |
|
"institution": str | dict | None, |
|
"location": str | dict | None |
|
} |
|
} |
|
``` |
|
|
|
### Reference Data Model |
|
```json |
|
{ |
|
"paperhash": str, |
|
"title": str, |
|
"abstract": str = "", |
|
"authors": list[Author], |
|
|
|
# IDs |
|
"arxiv_id": str | None, |
|
"s2_corpus_id": str | None, |
|
"external_ids": dict| None, |
|
|
|
# Reference specific info |
|
"intents": list[str] | None = None, |
|
"isInfluential": bool | None = None |
|
} |
|
``` |
|
|
|
|
|
### Comment Data Model |
|
```json |
|
{ |
|
"title": str, |
|
"comment": str |
|
} |
|
``` |
|
|
|
|
|
### Section Data Model |
|
```json |
|
{ |
|
"name": str, |
|
"sec_num": str, |
|
"classification": str, |
|
"text": str, |
|
"subsections": list[Section] |
|
} |
|
``` |
|
|
|
### Review Data Model |
|
|
|
```json |
|
{ |
|
"review_id": str, |
|
"review": { |
|
"title": str | None, |
|
"paper_summary": str | None, |
|
"main_review": str | None, |
|
"strength_weakness": str | None, |
|
"questions": str | None, |
|
"limitations": str | None, |
|
"review_summary": str | None |
|
} |
|
"score": float | None, |
|
"confidence": float | None, |
|
"novelty": float | None, |
|
"correctness": float | None, |
|
"clarity": float | None, |
|
"impact": float | None, |
|
"reproducibility": float | None, |
|
"ethics": str | None |
|
} |
|
``` |