File size: 3,432 Bytes
ff2ec40
 
 
 
 
 
 
 
 
 
 
413193f
 
4ea8860
 
 
ff2ec40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- SDQP
- scholarly
- citation_count_prediction
- review_score_prediction
configs:
- config_name: acl_ocl
  data_files: 
  - split: train
    path: "acl_ocl/*.json"
---

Datasets related to the task of Scholarly Document Quality Prediction (SDQP). 
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability).
The information that is potentially available for each sample can be found below.  

## ACL-OCL Extended
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main).
Extended with updated citation counts, references and annotated research hypothesis

## OpenReview 
A dataset for review score and citation count prediction, obtained by parsing OpenReview.
Due to licensing the dataset comes in 3 formats:

1. openreview-public: Contains full information on all OpenReview submissions that are accompanied by a license. 
2. openreview-full-light: The full dataset excluding the parsed pdfs of the submitted papers.
3. openreview-full: A script to obtain the full dataset with submissions.



## Citation

If you use the dataset in your work, please cite:



The data model for the papers:

### Paper Data Model
```json
{
# ID's
"paperhash": str,
"arxiv_id": str | None,
"s2_corpus_id": str | None,

# Basic Info
"title":str,
"authors": list[Author],
"abstract": str | None,
"summary": str | None,
"publication_date": str | None,

# OpenReview Metadata
"field_of_study": list[str] | str | None,
"venue": str | None,

# s2 Metadata
"n_references": int | None,
"n_citations": int | None,
"n_influential_citations": int | None,
"open_access": bool | None,
"external_ids": dict | None,
"pdf_url": str | None,

# Content
"parsed_pdf": dict | None,
"parsed_latex": dict | None,
"structured_content": dict[str, Section],

# Review Data
"openreview": bool,
"decision": bool | None,
"decision_text": str | None,
"reviews": list[Review] | None,
"comments": list[Comment] | None,

# References
"references": list[Reference] | None,
"bibref2section": dict,
"bibref2paperhash": dict,

# Hypothesis
"hypothesis": dict | None
}
```

### Author Data Model
```json
{
"name":str,
"affiliation": {
  "laboratory": str | dict | None,
  "institution": str | dict | None, 
  "location": str | dict | None
  }
}
```

### Reference Data Model 
```json
{
"paperhash": str,
"title": str,
"abstract": str = "",
"authors": list[Author],

# IDs
"arxiv_id": str | None,
"s2_corpus_id": str | None,
"external_ids": dict| None,

# Reference specific info
"intents": list[str] | None = None,
"isInfluential": bool | None = None
}
```


### Comment Data Model 
```json
{
"title": str,
"comment": str
}
```


### Section Data Model 
```json
{
"name": str,
"sec_num": str,
"classification": str,
"text": str,
"subsections": list[Section]
}
```

### Review Data Model

```json
{
"review_id": str,
"review": {
  "title": str | None,
  "paper_summary": str | None,
  "main_review": str | None,
  "strength_weakness": str | None,
  "questions": str | None,
  "limitations": str | None,
  "review_summary": str | None
}
"score": float | None,
"confidence": float | None,
"novelty": float | None,
"correctness": float | None,
"clarity": float | None,
"impact": float | None,
"reproducibility": float | None,
"ethics": str | None
}
```