Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,164 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- SDQP
|
9 |
+
- scholarly
|
10 |
+
- citation_count_prediction
|
11 |
+
- review_score_prediction
|
12 |
+
---
|
13 |
+
|
14 |
+
Datasets related to the task of Scholarly Document Quality Prediction (SDQP).
|
15 |
+
Each sample is an academic paper for which either the citation count or the review score can be predicted (depending on availability).
|
16 |
+
The information that is potentially available for each sample can be found below.
|
17 |
+
|
18 |
+
## ACL-OCL Extended
|
19 |
+
A dataset for citation count prediction only, based on the [ACL-OCL dataset](https://huggingface.co/datasets/WINGNUS/ACL-OCL/tree/main).
|
20 |
+
Extended with updated citation counts, references and annotated research hypothesis
|
21 |
+
|
22 |
+
## OpenReview
|
23 |
+
A dataset for review score and citation count prediction, obtained by parsing OpenReview.
|
24 |
+
Due to licensing the dataset comes in 3 formats:
|
25 |
+
|
26 |
+
1. openreview-public: Contains full information on all OpenReview submissions that are accompanied by a license.
|
27 |
+
2. openreview-full-light: The full dataset excluding the parsed pdfs of the submitted papers.
|
28 |
+
3. openreview-full: A script to obtain the full dataset with submissions.
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
## Citation
|
33 |
+
|
34 |
+
If you use the dataset in your work, please cite:
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
The data model for the papers:
|
39 |
+
|
40 |
+
### Paper Data Model
|
41 |
+
```json
|
42 |
+
{
|
43 |
+
# ID's
|
44 |
+
"paperhash": str,
|
45 |
+
"arxiv_id": str | None,
|
46 |
+
"s2_corpus_id": str | None,
|
47 |
+
|
48 |
+
# Basic Info
|
49 |
+
"title":str,
|
50 |
+
"authors": list[Author],
|
51 |
+
"abstract": str | None,
|
52 |
+
"summary": str | None,
|
53 |
+
"publication_date": str | None,
|
54 |
+
|
55 |
+
# OpenReview Metadata
|
56 |
+
"field_of_study": list[str] | str | None,
|
57 |
+
"venue": str | None,
|
58 |
+
|
59 |
+
# s2 Metadata
|
60 |
+
"n_references": int | None,
|
61 |
+
"n_citations": int | None,
|
62 |
+
"n_influential_citations": int | None,
|
63 |
+
"open_access": bool | None,
|
64 |
+
"external_ids": dict | None,
|
65 |
+
"pdf_url": str | None,
|
66 |
+
|
67 |
+
# Content
|
68 |
+
"parsed_pdf": dict | None,
|
69 |
+
"parsed_latex": dict | None,
|
70 |
+
"structured_content": dict[str, Section],
|
71 |
+
|
72 |
+
# Review Data
|
73 |
+
"openreview": bool,
|
74 |
+
"decision": bool | None,
|
75 |
+
"decision_text": str | None,
|
76 |
+
"reviews": list[Review] | None,
|
77 |
+
"comments": list[Comment] | None,
|
78 |
+
|
79 |
+
# References
|
80 |
+
"references": list[Reference] | None,
|
81 |
+
"bibref2section": dict,
|
82 |
+
"bibref2paperhash": dict,
|
83 |
+
|
84 |
+
# Hypothesis
|
85 |
+
"hypothesis": dict | None
|
86 |
+
}
|
87 |
+
```
|
88 |
+
|
89 |
+
### Author Data Model
|
90 |
+
```json
|
91 |
+
{
|
92 |
+
"name":str,
|
93 |
+
"affiliation": {
|
94 |
+
"laboratory": str | dict | None,
|
95 |
+
"institution": str | dict | None,
|
96 |
+
"location": str | dict | None
|
97 |
+
}
|
98 |
+
}
|
99 |
+
```
|
100 |
+
|
101 |
+
### Reference Data Model
|
102 |
+
```json
|
103 |
+
{
|
104 |
+
"paperhash": str,
|
105 |
+
"title": str,
|
106 |
+
"abstract": str = "",
|
107 |
+
"authors": list[Author],
|
108 |
+
|
109 |
+
# IDs
|
110 |
+
"arxiv_id": str | None,
|
111 |
+
"s2_corpus_id": str | None,
|
112 |
+
"external_ids": dict| None,
|
113 |
+
|
114 |
+
# Reference specific info
|
115 |
+
"intents": list[str] | None = None,
|
116 |
+
"isInfluential": bool | None = None
|
117 |
+
}
|
118 |
+
```
|
119 |
+
|
120 |
+
|
121 |
+
### Comment Data Model
|
122 |
+
```json
|
123 |
+
{
|
124 |
+
"title": str,
|
125 |
+
"comment": str
|
126 |
+
}
|
127 |
+
```
|
128 |
+
|
129 |
+
|
130 |
+
### Section Data Model
|
131 |
+
```json
|
132 |
+
{
|
133 |
+
"name": str,
|
134 |
+
"sec_num": str,
|
135 |
+
"classification": str,
|
136 |
+
"text": str,
|
137 |
+
"subsections": list[Section]
|
138 |
+
}
|
139 |
+
```
|
140 |
+
|
141 |
+
### Review Data Model
|
142 |
+
|
143 |
+
```json
|
144 |
+
{
|
145 |
+
"review_id": str,
|
146 |
+
"review": {
|
147 |
+
"title": str | None,
|
148 |
+
"paper_summary": str | None,
|
149 |
+
"main_review": str | None,
|
150 |
+
"strength_weakness": str | None,
|
151 |
+
"questions": str | None,
|
152 |
+
"limitations": str | None,
|
153 |
+
"review_summary": str | None
|
154 |
+
}
|
155 |
+
"score": float | None,
|
156 |
+
"confidence": float | None,
|
157 |
+
"novelty": float | None,
|
158 |
+
"correctness": float | None,
|
159 |
+
"clarity": float | None,
|
160 |
+
"impact": float | None,
|
161 |
+
"reproducibility": float | None,
|
162 |
+
"ethics": str | None
|
163 |
+
}
|
164 |
+
```
|