Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
action
sequencelengths
6
6
observation.state
sequencelengths
6
6
timestamp
float64
0
6.6
task_index
int64
0
0
episode_index
int64
0
2
frame_index
int64
0
66
index
int64
0
216
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
0
0
0
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
0
1
1
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
0
2
2
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
0
3
3
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
0
4
4
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
0
5
5
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
0
6
6
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
0
7
7
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
0
8
8
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
0
9
9
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
0
10
10
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
0
11
11
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
0
12
12
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
0
13
13
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
0
14
14
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
0
15
15
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
0
16
16
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
0
17
17
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
0
18
18
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
0
19
19
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
0
20
20
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
0
21
21
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
0
22
22
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
0
23
23
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
0
24
24
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
0
25
25
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
0
26
26
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
0
27
27
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
0
28
28
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
0
29
29
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
0
30
30
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
0
31
31
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
0
32
32
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.3
0
0
33
33
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.4
0
0
34
34
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.5
0
0
35
35
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.6
0
0
36
36
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.7
0
0
37
37
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.8
0
0
38
38
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.9
0
0
39
39
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4
0
0
40
40
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.1
0
0
41
41
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.2
0
0
42
42
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.3
0
0
43
43
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.4
0
0
44
44
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.5
0
0
45
45
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.6
0
0
46
46
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.7
0
0
47
47
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.8
0
0
48
48
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.9
0
0
49
49
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5
0
0
50
50
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.1
0
0
51
51
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.2
0
0
52
52
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.3
0
0
53
53
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.4
0
0
54
54
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.5
0
0
55
55
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.6
0
0
56
56
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.7
0
0
57
57
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.8
0
0
58
58
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
5.9
0
0
59
59
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6
0
0
60
60
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6.1
0
0
61
61
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6.2
0
0
62
62
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6.3
0
0
63
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6.4
0
0
64
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6.5
0
0
65
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
6.6
0
0
66
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
1
0
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
1
1
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
1
2
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
1
3
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
1
4
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
1
5
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
1
6
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
1
7
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
1
8
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
1
9
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
1
10
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
1
11
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
1
12
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
1
13
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
1
14
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
1
15
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
1
16
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
1
17
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
1
18
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
1
19
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
1
20
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
1
21
88
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
1
22
89
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
1
23
90
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
1
24
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
1
25
92
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
1
26
93
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
1
27
94
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
1
28
95
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
1
29
96
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
1
30
97
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
1
31
98
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
1
32
99

index_index

This dataset was generated using a phospho dev kit.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.

Downloads last month
7