|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- nbeerbower/llama-3-wissenschaft-8B-v2 |
|
license: llama3 |
|
language: |
|
- en |
|
- de |
|
--- |
|
|
|
# llama3-8b-spaetzle-v20 |
|
|
|
llama3-8b-spaetzle-v20 is an int4-inc (intel auto-round) quantized merge of the following models: |
|
* [cstr/llama3-8b-spaetzle-v13](https://huggingface.co/cstr/llama3-8b-spaetzle-v13) |
|
* [Azure99/blossom-v5-llama3-8b](https://huggingface.co/Azure99/blossom-v5-llama3-8b) |
|
* [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct) |
|
* [nbeerbower/llama-3-wissenschaft-8B-v2](https://huggingface.co/nbeerbower/llama-3-wissenschaft-8B-v2) |
|
|
|
## Benchmarks |
|
The GGUF q4_k_m version achieves on EQ-Bench v2_de 65.7 (171/171 parseable). From [Intel's low bit open llm leaderboard](https://huggingface.co/spaces/Intel/low_bit_open_llm_leaderboard): |
|
|
|
| Type | Model | Average ⬆️ | ARC-c | ARC-e | Boolq | HellaSwag | Lambada | MMLU | Openbookqa | Piqa | Truthfulqa | Winogrande | #Params (B) | #Size (G) | |
|
|------|-------------------------------------------|------------|-------|-------|-------|-----------|---------|-------|------------|-------|------------|------------|-------------|-----------| |
|
| 🍒 | **cstr/llama3-8b-spaetzle-v20-int4-inc** | **66.43** | **61.77** | **85.4** | **82.75** | **62.79** | **71.73** | **64.17** | **37.4** | **80.41** | **43.21** | **74.66** | **7.04** | **5.74** | |
|
|
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: cstr/llama3-8b-spaetzle-v13 |
|
# no parameters necessary for base model |
|
- model: nbeerbower/llama-3-wissenschaft-8B-v2 |
|
parameters: |
|
density: 0.65 |
|
weight: 0.4 |
|
merge_method: dare_ties |
|
base_model: cstr/llama3-8b-spaetzle-v13 |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
random_seed: 0 |
|
tokenizer_source: base |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "cstr/llama3-8b-spaetzle-v20" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |