File size: 2,496 Bytes
e654f87 c889c20 e654f87 722e9ff e654f87 f27452d e654f87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
tags:
- merge
- mergekit
- nbeerbower/llama-3-wissenschaft-8B-v2
license: llama3
language:
- en
- de
---
# llama3-8b-spaetzle-v20
llama3-8b-spaetzle-v20 is an int4-inc (intel auto-round) quantized merge of the following models:
* [cstr/llama3-8b-spaetzle-v13](https://huggingface.co/cstr/llama3-8b-spaetzle-v13)
* [Azure99/blossom-v5-llama3-8b](https://huggingface.co/Azure99/blossom-v5-llama3-8b)
* [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct)
* [nbeerbower/llama-3-wissenschaft-8B-v2](https://huggingface.co/nbeerbower/llama-3-wissenschaft-8B-v2)
## Benchmarks
The GGUF q4_k_m version achieves on EQ-Bench v2_de 65.7 (171/171 parseable). From [Intel's low bit open llm leaderboard](https://huggingface.co/spaces/Intel/low_bit_open_llm_leaderboard):
| Type | Model | Average ⬆️ | ARC-c | ARC-e | Boolq | HellaSwag | Lambada | MMLU | Openbookqa | Piqa | Truthfulqa | Winogrande | #Params (B) | #Size (G) |
|------|-------------------------------------------|------------|-------|-------|-------|-----------|---------|-------|------------|-------|------------|------------|-------------|-----------|
| 🍒 | **cstr/llama3-8b-spaetzle-v20-int4-inc** | **66.43** | **61.77** | **85.4** | **82.75** | **62.79** | **71.73** | **64.17** | **37.4** | **80.41** | **43.21** | **74.66** | **7.04** | **5.74** |
## 🧩 Configuration
```yaml
models:
- model: cstr/llama3-8b-spaetzle-v13
# no parameters necessary for base model
- model: nbeerbower/llama-3-wissenschaft-8B-v2
parameters:
density: 0.65
weight: 0.4
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v13
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/llama3-8b-spaetzle-v20"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |