|
# clock-vae-mono-100x-v1 |
|
์ํ๋ ์๊ฐ์ ์๋ ๋ก๊ทธ ์๊ณ ๋ฐ์ดํฐ๋ฅผ ์์ฑํ๊ธฐ ์ํด ๋ง๋ค์ด์ง VAE ๋ชจ๋ธ. |
|
|
|
--- |
|
|
|
## name definition |
|
- clock-vae : model name<br> |
|
- mono : color type(color or mono)<br> |
|
- 100x : image size(100x100)<br> |
|
- v1 : version<br> |
|
|
|
|
|
--- |
|
## model define code |
|
```py |
|
class ConditionalVAE(nn.Module): |
|
def __init__(self, input_dim, condition_dim, latent_dim): |
|
super(MonoClockVAEHandler.ConditionalVAE, self).__init__() |
|
self.encoder = nn.Sequential( |
|
nn.Linear(input_dim + condition_dim, 400), |
|
nn.ReLU(), |
|
nn.Linear(400, 200), |
|
nn.ReLU(), |
|
) |
|
self.fc_mu = nn.Linear(200, latent_dim) |
|
self.fc_logvar = nn.Linear(200, latent_dim) |
|
|
|
self.decoder = nn.Sequential( |
|
nn.Linear(latent_dim + condition_dim, 200), |
|
nn.ReLU(), |
|
nn.Linear(200, 400), |
|
nn.ReLU(), |
|
nn.Linear(400, input_dim), |
|
nn.Sigmoid() |
|
) |
|
|
|
def encode(self, x, condition): |
|
x = x.view(x.size(0), -1) |
|
condition = condition.view(condition.size(0), -1) |
|
x_cond = torch.cat([x, condition], dim=1) |
|
h = self.encoder(x_cond) |
|
mu = self.fc_mu(h) |
|
logvar = self.fc_logvar(h) |
|
return mu, logvar |
|
|
|
def reparameterize(self, mu, logvar): |
|
std = torch.exp(0.5 * logvar) |
|
eps = torch.randn_like(std) |
|
return mu + eps * std |
|
|
|
def decode(self, z, condition): |
|
z_cond = torch.cat([z, condition], dim=1) |
|
return self.decoder(z_cond) |
|
|
|
def forward(self, x, condition): |
|
mu, logvar = self.encode(x, condition) |
|
z = self.reparameterize(mu, logvar) |
|
return self.decode(z, condition), mu, logvar |
|
``` |