YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
clock-vae-mono-100x-v1
์ํ๋ ์๊ฐ์ ์๋ ๋ก๊ทธ ์๊ณ ๋ฐ์ดํฐ๋ฅผ ์์ฑํ๊ธฐ ์ํด ๋ง๋ค์ด์ง VAE ๋ชจ๋ธ.
name definition
- clock-vae : model name
- mono : color type(color or mono)
- 100x : image size(100x100)
- v1 : version
model define code
class ConditionalVAE(nn.Module):
def __init__(self, input_dim, condition_dim, latent_dim):
super(MonoClockVAEHandler.ConditionalVAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim + condition_dim, 400),
nn.ReLU(),
nn.Linear(400, 200),
nn.ReLU(),
)
self.fc_mu = nn.Linear(200, latent_dim)
self.fc_logvar = nn.Linear(200, latent_dim)
self.decoder = nn.Sequential(
nn.Linear(latent_dim + condition_dim, 200),
nn.ReLU(),
nn.Linear(200, 400),
nn.ReLU(),
nn.Linear(400, input_dim),
nn.Sigmoid()
)
def encode(self, x, condition):
x = x.view(x.size(0), -1)
condition = condition.view(condition.size(0), -1)
x_cond = torch.cat([x, condition], dim=1)
h = self.encoder(x_cond)
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z, condition):
z_cond = torch.cat([z, condition], dim=1)
return self.decoder(z_cond)
def forward(self, x, condition):
mu, logvar = self.encode(x, condition)
z = self.reparameterize(mu, logvar)
return self.decode(z, condition), mu, logvar
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.