YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

clock-vae-mono-100x-v1

์›ํ•˜๋Š” ์‹œ๊ฐ„์˜ ์•„๋‚ ๋กœ๊ทธ ์‹œ๊ณ„ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋งŒ๋“ค์–ด์ง„ VAE ๋ชจ๋ธ.


name definition

  • clock-vae : model name
  • mono : color type(color or mono)
  • 100x : image size(100x100)
  • v1 : version

model define code

class ConditionalVAE(nn.Module):
    def __init__(self, input_dim, condition_dim, latent_dim):
        super(MonoClockVAEHandler.ConditionalVAE, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(input_dim + condition_dim, 400),
            nn.ReLU(),
            nn.Linear(400, 200),
            nn.ReLU(),
        )
        self.fc_mu = nn.Linear(200, latent_dim)
        self.fc_logvar = nn.Linear(200, latent_dim)
    
        self.decoder = nn.Sequential(
            nn.Linear(latent_dim + condition_dim, 200),
            nn.ReLU(),
            nn.Linear(200, 400),
            nn.ReLU(),
            nn.Linear(400, input_dim),
            nn.Sigmoid()
        )
    
    def encode(self, x, condition):
        x = x.view(x.size(0), -1)
        condition = condition.view(condition.size(0), -1)
        x_cond = torch.cat([x, condition], dim=1)
        h = self.encoder(x_cond)
        mu = self.fc_mu(h)
        logvar = self.fc_logvar(h)
        return mu, logvar
    
    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std
    
    def decode(self, z, condition):
        z_cond = torch.cat([z, condition], dim=1)
        return self.decoder(z_cond)
    
    def forward(self, x, condition):
        mu, logvar = self.encode(x, condition)
        z = self.reparameterize(mu, logvar)
        return self.decode(z, condition), mu, logvar
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.