|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: ModernBERT-large-hinglish-binary |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ModernBERT-large-hinglish-binary |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6142 |
|
- Accuracy: 0.6747 |
|
- Precision: 0.6564 |
|
- Recall: 0.5824 |
|
- F1: 0.5687 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.622 | 1.0 | 26 | 0.6508 | 0.6349 | 0.5900 | 0.5758 | 0.5758 | |
|
| 2.5166 | 2.0 | 52 | 0.6293 | 0.6703 | 0.7476 | 0.5500 | 0.4956 | |
|
| 2.5527 | 3.0 | 78 | 0.6549 | 0.6022 | 0.6064 | 0.6150 | 0.5961 | |
|
| 2.3672 | 4.0 | 104 | 0.5995 | 0.6975 | 0.7001 | 0.6087 | 0.6017 | |
|
| 1.9234 | 5.0 | 130 | 0.6055 | 0.6839 | 0.6574 | 0.6564 | 0.6569 | |
|
| 0.9818 | 6.0 | 156 | 0.8319 | 0.6676 | 0.6434 | 0.6468 | 0.6448 | |
|
| 0.3056 | 7.0 | 182 | 0.9884 | 0.6730 | 0.6484 | 0.6511 | 0.6495 | |
|
| 0.0518 | 8.0 | 208 | 1.2367 | 0.6730 | 0.6492 | 0.6527 | 0.6506 | |
|
| 0.0083 | 9.0 | 234 | 1.2961 | 0.6839 | 0.6586 | 0.6596 | 0.6591 | |
|
| 0.0023 | 9.6214 | 250 | 1.3402 | 0.6948 | 0.6664 | 0.6471 | 0.6518 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|