callmesan's picture
End of training
88761b8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ModernBERT-large-hinglish-binary
    results: []

ModernBERT-large-hinglish-binary

This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6142
  • Accuracy: 0.6747
  • Precision: 0.6564
  • Recall: 0.5824
  • F1: 0.5687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.622 1.0 26 0.6508 0.6349 0.5900 0.5758 0.5758
2.5166 2.0 52 0.6293 0.6703 0.7476 0.5500 0.4956
2.5527 3.0 78 0.6549 0.6022 0.6064 0.6150 0.5961
2.3672 4.0 104 0.5995 0.6975 0.7001 0.6087 0.6017
1.9234 5.0 130 0.6055 0.6839 0.6574 0.6564 0.6569
0.9818 6.0 156 0.8319 0.6676 0.6434 0.6468 0.6448
0.3056 7.0 182 0.9884 0.6730 0.6484 0.6511 0.6495
0.0518 8.0 208 1.2367 0.6730 0.6492 0.6527 0.6506
0.0083 9.0 234 1.2961 0.6839 0.6586 0.6596 0.6591
0.0023 9.6214 250 1.3402 0.6948 0.6664 0.6471 0.6518

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0