metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:314315
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: A man plays the violin.
sentences:
- A man is playing violin.
- The back of a pig under a tree with a cow in the background.
- The plane is getting ready to take off.
- source_sentence: A person drops a camera down an escelator.
sentences:
- Something is bothering your cat and he does not like it.
- A man tosses a bag down an escalator.
- Two smiling women holding a baby.
- source_sentence: One football player tries to tackle a player on the opposing team.
sentences:
- I think Stephen King's comments are helpful in this regard.
- Our interactions are merely depends on where we put our perception.
- A football player attempts a tackle.
- source_sentence: The two men are wearing jeans.
sentences:
- Four people eating dessert around a table.
- >-
Here are some things that worked with my son who started toilet training
around 2.5 years.
- The two men are wearing pants.
- source_sentence: >-
This may be overly obvious, but in American English, saying "you're
welcome" is certainly polite and standard.
sentences:
- I'm not sure how "Not at all" sounds in response to "thank you".
- >-
As bikeboy389 said, you can learn a lot by looking at students' native
languages.
- A laptop and a PC at a workstation.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.5397679884752445
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9089176654815674
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6834040429248815
name: Cosine F1
- type: cosine_f1_threshold
value: 0.3752323389053345
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5191082802547771
name: Cosine Precision
- type: cosine_recall
value: 0.9998539506353147
name: Cosine Recall
- type: cosine_ap
value: 0.5794582374804604
name: Cosine Ap
- type: dot_accuracy
value: 0.5302903935097429
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 391.4422302246094
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6834040429248815
name: Dot F1
- type: dot_f1_threshold
value: 175.07894897460938
name: Dot F1 Threshold
- type: dot_precision
value: 0.5191082802547771
name: Dot Precision
- type: dot_recall
value: 0.9998539506353147
name: Dot Recall
- type: dot_ap
value: 0.5621671154600225
name: Dot Ap
- type: manhattan_accuracy
value: 0.5644855561452726
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 160.045654296875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6834381551362683
name: Manhattan F1
- type: manhattan_f1_threshold
value: 322.75946044921875
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5191476454083567
name: Manhattan Precision
- type: manhattan_recall
value: 0.9998539506353147
name: Manhattan Recall
- type: manhattan_ap
value: 0.6033119142961784
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.5387064978391084
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 8.973075866699219
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6834065495207667
name: Euclidean F1
- type: euclidean_f1_threshold
value: 24.51708221435547
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5191505498672734
name: Euclidean Precision
- type: euclidean_recall
value: 0.9997079012706295
name: Euclidean Recall
- type: euclidean_ap
value: 0.577277049262529
name: Euclidean Ap
- type: max_accuracy
value: 0.5644855561452726
name: Max Accuracy
- type: max_accuracy_threshold
value: 391.4422302246094
name: Max Accuracy Threshold
- type: max_f1
value: 0.6834381551362683
name: Max F1
- type: max_f1_threshold
value: 322.75946044921875
name: Max F1 Threshold
- type: max_precision
value: 0.5191505498672734
name: Max Precision
- type: max_recall
value: 0.9998539506353147
name: Max Recall
- type: max_ap
value: 0.6033119142961784
name: Max Ap
SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
# Run inference
sentences = [
'This may be overly obvious, but in American English, saying "you\'re welcome" is certainly polite and standard.',
'I\'m not sure how "Not at all" sounds in response to "thank you".',
"As bikeboy389 said, you can learn a lot by looking at students' native languages.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.5398 |
cosine_accuracy_threshold | 0.9089 |
cosine_f1 | 0.6834 |
cosine_f1_threshold | 0.3752 |
cosine_precision | 0.5191 |
cosine_recall | 0.9999 |
cosine_ap | 0.5795 |
dot_accuracy | 0.5303 |
dot_accuracy_threshold | 391.4422 |
dot_f1 | 0.6834 |
dot_f1_threshold | 175.0789 |
dot_precision | 0.5191 |
dot_recall | 0.9999 |
dot_ap | 0.5622 |
manhattan_accuracy | 0.5645 |
manhattan_accuracy_threshold | 160.0457 |
manhattan_f1 | 0.6834 |
manhattan_f1_threshold | 322.7595 |
manhattan_precision | 0.5191 |
manhattan_recall | 0.9999 |
manhattan_ap | 0.6033 |
euclidean_accuracy | 0.5387 |
euclidean_accuracy_threshold | 8.9731 |
euclidean_f1 | 0.6834 |
euclidean_f1_threshold | 24.5171 |
euclidean_precision | 0.5192 |
euclidean_recall | 0.9997 |
euclidean_ap | 0.5773 |
max_accuracy | 0.5645 |
max_accuracy_threshold | 391.4422 |
max_f1 | 0.6834 |
max_f1_threshold | 322.7595 |
max_precision | 0.5192 |
max_recall | 0.9999 |
max_ap | 0.6033 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
0
Children smiling and waving at camera
There are children present
0
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Training Logs
Epoch | Step | loss | max_ap |
---|---|---|---|
None | 0 | 4.6204 | 0.6033 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}