SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
# Run inference
sentences = [
'A wet child stands in chest deep ocean water.',
'The child s playing on the beach.',
'A woman paints a portrait of her best friend.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6583 |
cosine_accuracy_threshold | 0.6767 |
cosine_f1 | 0.7049 |
cosine_f1_threshold | 0.6018 |
cosine_precision | 0.6115 |
cosine_recall | 0.8321 |
cosine_ap | 0.6995 |
dot_accuracy | 0.6272 |
dot_accuracy_threshold | 163.2505 |
dot_f1 | 0.6976 |
dot_f1_threshold | 119.2078 |
dot_precision | 0.5639 |
dot_recall | 0.9144 |
dot_ap | 0.6437 |
manhattan_accuracy | 0.6571 |
manhattan_accuracy_threshold | 243.7545 |
manhattan_f1 | 0.7056 |
manhattan_f1_threshold | 295.9595 |
manhattan_precision | 0.5901 |
manhattan_recall | 0.8773 |
manhattan_ap | 0.7072 |
euclidean_accuracy | 0.6591 |
euclidean_accuracy_threshold | 12.1418 |
euclidean_f1 | 0.7037 |
euclidean_f1_threshold | 14.1975 |
euclidean_precision | 0.5997 |
euclidean_recall | 0.8513 |
euclidean_ap | 0.7035 |
max_accuracy | 0.6591 |
max_accuracy_threshold | 243.7545 |
max_f1 | 0.7056 |
max_f1_threshold | 295.9595 |
max_precision | 0.6115 |
max_recall | 0.9144 |
max_ap | 0.7072 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7322 |
spearman_cosine | 0.7345 |
pearson_manhattan | 0.7537 |
spearman_manhattan | 0.7551 |
pearson_euclidean | 0.7468 |
spearman_euclidean | 0.7485 |
pearson_dot | 0.6143 |
spearman_dot | 0.61 |
pearson_max | 0.7537 |
spearman_max | 0.7551 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 67,190 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 21.19 tokens
- max: 133 tokens
- min: 4 tokens
- mean: 11.77 tokens
- max: 49 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.
It is necessary to use a controlled method to ensure the treatments are worthwhile.
0
It was conducted in silence.
It was done silently.
0
oh Lewisville any decent food in your cafeteria up there
Is there any decent food in your cafeteria up there in Lewisville?
0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1, "kl_temperature": 1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 42per_device_eval_batch_size
: 22learning_rate
: 3e-06weight_decay
: 1e-08num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.5save_safetensors
: Falsefp16
: Truehub_model_id
: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmphub_strategy
: checkpointhub_private_repo
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 42per_device_eval_batch_size
: 22per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 3e-06weight_decay
: 1e-08adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.5warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmphub_strategy
: checkpointhub_private_repo
: Truehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | max_ap | spearman_cosine |
---|---|---|---|---|---|
0.1 | 160 | 4.6003 | 4.8299 | 0.6017 | - |
0.2 | 320 | 4.0659 | 4.3436 | 0.6168 | - |
0.3 | 480 | 3.4886 | 4.0840 | 0.6339 | - |
0.4 | 640 | 3.0592 | 3.6422 | 0.6611 | - |
0.5 | 800 | 2.5728 | 3.1927 | 0.6773 | - |
0.6 | 960 | 2.184 | 2.8322 | 0.6893 | - |
0.7 | 1120 | 1.8744 | 2.4892 | 0.6954 | - |
0.8 | 1280 | 1.757 | 2.4453 | 0.7002 | - |
0.9 | 1440 | 1.5872 | 2.2565 | 0.7010 | - |
1.0 | 1600 | 1.446 | 2.1391 | 0.7046 | - |
1.1 | 1760 | 1.3892 | 2.1236 | 0.7058 | - |
1.2 | 1920 | 1.2567 | 1.9738 | 0.7053 | - |
1.3 | 2080 | 1.2233 | 1.8925 | 0.7063 | - |
1.4 | 2240 | 1.1954 | 1.8392 | 0.7075 | - |
1.5 | 2400 | 1.1395 | 1.9081 | 0.7065 | - |
1.6 | 2560 | 1.1211 | 1.8080 | 0.7074 | - |
1.7 | 2720 | 1.0825 | 1.8408 | 0.7073 | - |
1.8 | 2880 | 1.1358 | 1.7363 | 0.7073 | - |
1.9 | 3040 | 1.0628 | 1.8936 | 0.7072 | - |
2.0 | 3200 | 1.1412 | 1.7846 | 0.7072 | - |
None | 0 | - | 3.0121 | 0.7072 | 0.7345 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2
Base model
microsoft/deberta-v3-smallDataset used to train bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2
Evaluation results
- Cosine Accuracy on Unknownself-reported0.658
- Cosine Accuracy Threshold on Unknownself-reported0.677
- Cosine F1 on Unknownself-reported0.705
- Cosine F1 Threshold on Unknownself-reported0.602
- Cosine Precision on Unknownself-reported0.612
- Cosine Recall on Unknownself-reported0.832
- Cosine Ap on Unknownself-reported0.700
- Dot Accuracy on Unknownself-reported0.627
- Dot Accuracy Threshold on Unknownself-reported163.251
- Dot F1 on Unknownself-reported0.698