SMG0's picture
usingF1
c3b5e5c verified
metadata
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02-twitter
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Model4_arabertv2_base_T1_WS_A100_2nd_F1
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

Model4_arabertv2_base_T1_WS_A100_2nd_F1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02-twitter on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2587
  • F1 Micro: 0.8495
  • F1 Macro: 0.7753
  • Roc Auc: 0.9091
  • Accuracy: 0.8254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Roc Auc Accuracy
0.0226 1.0 507 0.2380 0.8341 0.7767 0.9012 0.8094
0.0303 2.0 1014 0.2433 0.8341 0.7606 0.8980 0.8094
0.0179 3.0 1521 0.2635 0.8308 0.7540 0.8987 0.8024
0.0141 4.0 2028 0.2587 0.8495 0.7753 0.9091 0.8254
0.0083 5.0 2535 0.2919 0.8353 0.7731 0.9017 0.8059
0.0066 6.0 3042 0.2922 0.8329 0.7611 0.9006 0.8045
0.0054 7.0 3549 0.3193 0.8358 0.7752 0.9016 0.8128

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3