--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - accuracy model-index: - name: Model4_arabertv2_base_T1_WS_A100_2nd_F1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100/runs/tr0iviop) [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100/runs/tr0iviop) [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100/runs/tr0iviop) # Model4_arabertv2_base_T1_WS_A100_2nd_F1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2587 - F1 Micro: 0.8495 - F1 Macro: 0.7753 - Roc Auc: 0.9091 - Accuracy: 0.8254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-------:|:--------:| | 0.0226 | 1.0 | 507 | 0.2380 | 0.8341 | 0.7767 | 0.9012 | 0.8094 | | 0.0303 | 2.0 | 1014 | 0.2433 | 0.8341 | 0.7606 | 0.8980 | 0.8094 | | 0.0179 | 3.0 | 1521 | 0.2635 | 0.8308 | 0.7540 | 0.8987 | 0.8024 | | 0.0141 | 4.0 | 2028 | 0.2587 | 0.8495 | 0.7753 | 0.9091 | 0.8254 | | 0.0083 | 5.0 | 2535 | 0.2919 | 0.8353 | 0.7731 | 0.9017 | 0.8059 | | 0.0066 | 6.0 | 3042 | 0.2922 | 0.8329 | 0.7611 | 0.9006 | 0.8045 | | 0.0054 | 7.0 | 3549 | 0.3193 | 0.8358 | 0.7752 | 0.9016 | 0.8128 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3