|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-base-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- recall |
|
- f1 |
|
- precision |
|
model-index: |
|
- name: swin-base-patch4-window7-224-finetuned-ind-17-imbalanced-aadhaarmask |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.855683269476373 |
|
- name: Recall |
|
type: recall |
|
value: 0.855683269476373 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8542203503644927 |
|
- name: Precision |
|
type: precision |
|
value: 0.8559779206156822 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-base-patch4-window7-224-finetuned-ind-17-imbalanced-aadhaarmask |
|
|
|
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3209 |
|
- Accuracy: 0.8557 |
|
- Recall: 0.8557 |
|
- F1: 0.8542 |
|
- Precision: 0.8560 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.5155 | 0.9974 | 293 | 0.5710 | 0.7935 | 0.7935 | 0.7821 | 0.7895 | |
|
| 0.4245 | 1.9983 | 587 | 0.4729 | 0.8238 | 0.8238 | 0.8187 | 0.8266 | |
|
| 0.4183 | 2.9991 | 881 | 0.4145 | 0.8408 | 0.8408 | 0.8309 | 0.8350 | |
|
| 0.4088 | 4.0 | 1175 | 0.3901 | 0.8425 | 0.8425 | 0.8375 | 0.8501 | |
|
| 0.3489 | 4.9974 | 1468 | 0.3703 | 0.8463 | 0.8463 | 0.8446 | 0.8518 | |
|
| 0.3115 | 5.9983 | 1762 | 0.3500 | 0.8540 | 0.8540 | 0.8525 | 0.8605 | |
|
| 0.3087 | 6.9991 | 2056 | 0.3338 | 0.8519 | 0.8519 | 0.8494 | 0.8582 | |
|
| 0.2372 | 8.0 | 2350 | 0.3181 | 0.8548 | 0.8548 | 0.8543 | 0.8587 | |
|
| 0.2816 | 8.9974 | 2643 | 0.3167 | 0.8536 | 0.8536 | 0.8530 | 0.8561 | |
|
| 0.2378 | 9.9745 | 2930 | 0.3063 | 0.8702 | 0.8702 | 0.8686 | 0.8709 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.0a0+81ea7a4 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|