End of training
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-base-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
model-index:
|
14 |
+
- name: swin-base-patch4-window7-224-finetuned-ind-17-imbalanced-aadhaarmask
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.855683269476373
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.855683269476373
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8542203503644927
|
35 |
+
- name: Precision
|
36 |
+
type: precision
|
37 |
+
value: 0.8559779206156822
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# swin-base-patch4-window7-224-finetuned-ind-17-imbalanced-aadhaarmask
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.3209
|
48 |
+
- Accuracy: 0.8557
|
49 |
+
- Recall: 0.8557
|
50 |
+
- F1: 0.8542
|
51 |
+
- Precision: 0.8560
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- gradient_accumulation_steps: 4
|
75 |
+
- total_train_batch_size: 32
|
76 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
+
- lr_scheduler_type: linear
|
78 |
+
- lr_scheduler_warmup_ratio: 0.1
|
79 |
+
- num_epochs: 10
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
|
84 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
85 |
+
| 0.5155 | 0.9974 | 293 | 0.5710 | 0.7935 | 0.7935 | 0.7821 | 0.7895 |
|
86 |
+
| 0.4245 | 1.9983 | 587 | 0.4729 | 0.8238 | 0.8238 | 0.8187 | 0.8266 |
|
87 |
+
| 0.4183 | 2.9991 | 881 | 0.4145 | 0.8408 | 0.8408 | 0.8309 | 0.8350 |
|
88 |
+
| 0.4088 | 4.0 | 1175 | 0.3901 | 0.8425 | 0.8425 | 0.8375 | 0.8501 |
|
89 |
+
| 0.3489 | 4.9974 | 1468 | 0.3703 | 0.8463 | 0.8463 | 0.8446 | 0.8518 |
|
90 |
+
| 0.3115 | 5.9983 | 1762 | 0.3500 | 0.8540 | 0.8540 | 0.8525 | 0.8605 |
|
91 |
+
| 0.3087 | 6.9991 | 2056 | 0.3338 | 0.8519 | 0.8519 | 0.8494 | 0.8582 |
|
92 |
+
| 0.2372 | 8.0 | 2350 | 0.3181 | 0.8548 | 0.8548 | 0.8543 | 0.8587 |
|
93 |
+
| 0.2816 | 8.9974 | 2643 | 0.3167 | 0.8536 | 0.8536 | 0.8530 | 0.8561 |
|
94 |
+
| 0.2378 | 9.9745 | 2930 | 0.3063 | 0.8702 | 0.8702 | 0.8686 | 0.8709 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.40.1
|
100 |
+
- Pytorch 2.2.0a0+81ea7a4
|
101 |
+
- Datasets 2.19.0
|
102 |
+
- Tokenizers 0.19.1
|
emissions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2024-05-01T12:15:56,codecarbon,6aab74d9-d983-4b79-912b-cc9135ed7e1a,1640.7660071849823,0.00017852877611468777,1.0880818796397712e-07,42.5,80.79325300010011,11.667008399963379,0.019369272104899096,0.050416735333356055,0.005313847827589656,0.07509985526584478,Canada,CAN,quebec,,,Linux-5.15.0-105-generic-x86_64-with-glibc2.35,3.10.12,2.3.5,32,13th Gen Intel(R) Core(TM) i9-13900K,1,1 x NVIDIA GeForce RTX 4060 Ti,-71.2,46.8,31.112022399902344,machine,N,1.0
|
runs/May01_11-48-33_60f4804cf903/events.out.tfevents.1714565821.60f4804cf903.1244.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c243c937218c80485e247a090138d2222a6a69358a122980082d9376c3af7f4
|
3 |
+
size 560
|