![Dagobert42's picture](https://cdn-avatars.huggingface.co/v1/production/uploads/63eb70f06bf1c3d02cb4e337/SGCIMl8MzMwS4UWBs-8lf.jpeg)
Push ../models/distilbert-base-uncased/biored-augmentations-only/ trained on biored-original_splits.pt (200 samples)
c733bb4
verified
metadata
language:
- en
license: mit
base_model: distilbert-base-uncased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/distilbert-base-uncased-biored-augmented
results: []
Dagobert42/distilbert-base-uncased-biored-augmented
This model is a fine-tuned version of distilbert-base-uncased on the bigbio/biored dataset. It achieves the following results on the evaluation set:
- Loss: 0.5260
- Accuracy: 0.8133
- Precision: 0.6083
- Recall: 0.5678
- F1: 0.5839
- Weighted F1: 0.8098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.5511 | 0.8048 | 0.594 | 0.5104 | 0.5398 | 0.792 |
No log | 2.0 | 50 | 0.5480 | 0.8075 | 0.6351 | 0.5573 | 0.5824 | 0.8 |
No log | 3.0 | 75 | 0.5479 | 0.8128 | 0.657 | 0.5467 | 0.5781 | 0.8032 |
No log | 4.0 | 100 | 0.5472 | 0.8111 | 0.6286 | 0.5859 | 0.6033 | 0.8063 |
No log | 5.0 | 125 | 0.5590 | 0.8099 | 0.6159 | 0.5816 | 0.5914 | 0.8065 |
No log | 6.0 | 150 | 0.5616 | 0.8131 | 0.5851 | 0.5673 | 0.5756 | 0.8098 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0