Dagobert42/distilbert-base-uncased-biored-augmented
This model is a fine-tuned version of distilbert-base-uncased on the bigbio/biored dataset. It achieves the following results on the evaluation set:
- Loss: 0.5692
- Accuracy: 0.7978
- Precision: 0.5993
- Recall: 0.5337
- F1: 0.5536
- Weighted F1: 0.7929
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.6037 | 0.7824 | 0.5931 | 0.4937 | 0.5272 | 0.7719 |
No log | 2.0 | 50 | 0.5858 | 0.7932 | 0.6023 | 0.5298 | 0.5511 | 0.7849 |
No log | 3.0 | 75 | 0.5887 | 0.795 | 0.5757 | 0.5283 | 0.544 | 0.7842 |
No log | 4.0 | 100 | 0.5890 | 0.7937 | 0.5911 | 0.5331 | 0.5466 | 0.7864 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Dagobert42/distilbert-base-uncased-biored-augmented
Base model
distilbert/distilbert-base-uncased