CheeLi03's picture
Upload tokenizer
9c30e24 verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - en
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base English Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: en_us
          split: None
          args: 'config: en split: test'
        metrics:
          - type: wer
            value: 19.829988851727983
            name: Wer

Whisper Base English Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6360
  • Wer: 19.8300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0204 5.3191 1000 0.4849 18.1368
0.0018 10.6383 2000 0.5678 18.4225
0.0009 15.9574 3000 0.6035 19.2795
0.0006 21.2766 4000 0.6268 19.6210
0.0005 26.5957 5000 0.6360 19.8300

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3