--- base_model: openai/whisper-base datasets: - fleurs language: - en library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Base English Punctuation 5k - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: en_us split: None args: 'config: en split: test' metrics: - type: wer value: 19.829988851727983 name: Wer --- # Whisper Base English Punctuation 5k - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.6360 - Wer: 19.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0204 | 5.3191 | 1000 | 0.4849 | 18.1368 | | 0.0018 | 10.6383 | 2000 | 0.5678 | 18.4225 | | 0.0009 | 15.9574 | 3000 | 0.6035 | 19.2795 | | 0.0006 | 21.2766 | 4000 | 0.6268 | 19.6210 | | 0.0005 | 26.5957 | 5000 | 0.6360 | 19.8300 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3