Binodt's picture
End of training
61099c0 verified
|
raw
history blame
2.46 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilgpt2
tags:
  - generated_from_trainer
model-index:
  - name: distilgpt2-finetuned-wellness
    results: []

distilgpt2-finetuned-wellness

This model is a fine-tuned version of distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.4055 0.9927 102 2.8632
2.6839 1.9951 205 2.3235
2.3467 2.9976 308 2.1428
2.1832 4.0 411 2.0383
2.0576 4.9927 513 1.9659
1.9634 5.9951 616 1.9195
1.8834 6.9976 719 1.8783
1.8251 8.0 822 1.8546
1.7861 8.9927 924 1.8331
1.7299 9.9951 1027 1.8186
1.6952 10.9976 1130 1.8070
1.673 12.0 1233 1.7945
1.6387 12.9927 1335 1.7904
1.6138 13.9951 1438 1.7845
1.6028 14.9976 1541 1.7793
1.5778 16.0 1644 1.7761
1.5668 16.9927 1746 1.7727
1.5534 17.9951 1849 1.7719
1.5557 18.9976 1952 1.7711
1.5438 19.8540 2040 1.7698

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.0