distilgpt2-finetuned-wellness

This model is a fine-tuned version of distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.0101 1.0 158 2.1220
2.0886 2.0 316 1.9541
1.9941 3.0 474 1.8785
1.8701 4.0 632 1.8243
1.8238 5.0 790 1.7894
1.743 6.0 948 1.7593
1.699 7.0 1106 1.7376
1.6606 8.0 1264 1.7188
1.6345 9.0 1422 1.7027
1.6208 10.0 1580 1.6914
1.5896 11.0 1738 1.6830
1.5694 12.0 1896 1.6722
1.5468 13.0 2054 1.6671
1.5311 14.0 2212 1.6663
1.5172 15.0 2370 1.6602
1.51 16.0 2528 1.6544
1.4916 17.0 2686 1.6555
1.4782 18.0 2844 1.6529
1.4829 19.0 3002 1.6532
1.4639 20.0 3160 1.6526

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
64
Safetensors
Model size
81.9M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Binodt/distilgpt2-finetuned-wellness

Finetuned
(616)
this model