metadata
library_name: sklearn
tags:
- sklearn
- skops
- text-classification
model_file: middle_dutch_text-classification.pkl
widget:
- text: >-
Wje mayelin onghereit pieter van der beyke andries jnghel jehan de bleyer
en jacob de bere Sceipenen mire vrauwen der Abbedessen van meessine jn
nortscoten ende jn zuutscoten jn dien tyden doen te weitene tolle den
gonen die deisen chaertre sullen zien of horen leisen Dat ledenaerd van
den cole portre jn ypre heift ghecocht en ghecreighe ervelike te sine bouf
en te sijns hoyrs bouf jeghen jacob cruken poortre jn ypre .vijf.
vierendeel ymeits lants ligghende jn de proghye van zuutscote namelike
binder vierscare mire vrauwen vors dat es te weitene oostwaert over dypre
jeghe de woninghe marie sbuerechgrauen oostwaert over de strate streckende
oost wart toter steenstrate moelne tussche martins broukers lande en johan
covents lande an de zuutside ende clais onghereiden lande an de noortzide
belast dit vors lant met twalef scellinghe en achte peninghe siaers
erveliker rente.
Model description
Middle Dutch NER with PassiveAgressiveClassifier
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
TESTING
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('trans', FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)), ('vectorizer', CountVectorizer()), ('classifier', PassiveAggressiveClassifier(random_state=42))] |
verbose | False |
trans | FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>) |
vectorizer | CountVectorizer() |
classifier | PassiveAggressiveClassifier(random_state=42) |
trans__accept_sparse | False |
trans__check_inverse | True |
trans__feature_names_out | |
trans__func | <function revert_data at 0x7f3fb95883a0> |
trans__inv_kw_args | |
trans__inverse_func | |
trans__kw_args | |
trans__validate | False |
vectorizer__analyzer | word |
vectorizer__binary | False |
vectorizer__decode_error | strict |
vectorizer__dtype | <class 'numpy.int64'> |
vectorizer__encoding | utf-8 |
vectorizer__input | content |
vectorizer__lowercase | True |
vectorizer__max_df | 1.0 |
vectorizer__max_features | |
vectorizer__min_df | 1 |
vectorizer__ngram_range | (1, 1) |
vectorizer__preprocessor | |
vectorizer__stop_words | |
vectorizer__strip_accents | |
vectorizer__token_pattern | (?u)\b\w\w+\b |
vectorizer__tokenizer | |
vectorizer__vocabulary | |
classifier__C | 1.0 |
classifier__average | False |
classifier__class_weight | |
classifier__early_stopping | False |
classifier__fit_intercept | True |
classifier__loss | hinge |
classifier__max_iter | 1000 |
classifier__n_iter_no_change | 5 |
classifier__n_jobs | |
classifier__random_state | 42 |
classifier__shuffle | True |
classifier__tol | 0.001 |
classifier__validation_fraction | 0.1 |
classifier__verbose | 0 |
classifier__warm_start | False |
Model Plot
The model plot is below.
Pipeline(steps=[('trans',FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)),('vectorizer', CountVectorizer()),('classifier', PassiveAggressiveClassifier(random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('trans',FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)),('vectorizer', CountVectorizer()),('classifier', PassiveAggressiveClassifier(random_state=42))])
FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)
CountVectorizer()
PassiveAggressiveClassifier(random_state=42)
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|---|
accuracy including 'O' | 0.903724 |
f1 score including 'O | 0.903724 |
precision excluding 'O' | 0.803184 |
recall excluding 'O' | 0.525071 |
f1 excluding 'O' | 0.635011 |
Confusion Matrix
How to Get Started with the Model
[More Information Needed]
Model Card Authors
Alassea TEST
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
BibTeX
@inproceedings{...,year={2022}}