---
library_name: sklearn
tags:
- sklearn
- skops
- text-classification
model_file: middle_dutch_text-classification.pkl
widget:
- text: "Wje mayelin onghereit pieter van der beyke andries jnghel jehan de bleyer en jacob de bere Sceipenen mire vrauwen der Abbedessen van meessine jn nortscoten ende jn zuutscoten jn dien tyden doen te weitene tolle den gonen die deisen chaertre sullen zien of horen leisen Dat ledenaerd van den cole portre jn ypre heift ghecocht en ghecreighe ervelike te sine bouf en te sijns hoyrs bouf jeghen jacob cruken poortre jn ypre .vijf. vierendeel ymeits lants ligghende jn de proghye van zuutscote namelike binder vierscare mire vrauwen vors dat es te weitene oostwaert over dypre jeghe de woninghe marie sbuerechgrauen oostwaert over de strate streckende oost wart toter steenstrate moelne tussche martins broukers lande en johan covents lande an de zuutside ende clais onghereiden lande an de noortzide belast dit vors lant met twalef scellinghe en achte peninghe siaers erveliker rente."
---
# Model description
Middle Dutch NER with PassiveAgressiveClassifier
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
TESTING
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('trans', FunctionTransformer(func=
Pipeline(steps=[('trans',FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)),('vectorizer', CountVectorizer()),('classifier', PassiveAggressiveClassifier(random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('trans',FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)),('vectorizer', CountVectorizer()),('classifier', PassiveAggressiveClassifier(random_state=42))])
FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)
CountVectorizer()
PassiveAggressiveClassifier(random_state=42)