x1saint's picture
Add new SentenceTransformer model
a460a54 verified
metadata
language:
  - tr
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:482091
  - loss:MultipleNegativesRankingLoss
base_model: Supabase/gte-small
widget:
  - source_sentence: >-
      Ya da dışarı çıkıp yürü ya da biraz koşun. Bunu düzenli olarak yapmıyorum
      ama Washington bunu yapmak için harika bir yer.
    sentences:
      - “Washington's yürüyüş ya da koşu için harika bir yer.”
      - H-2A uzaylılar Amerika Birleşik Devletleri'nde zaman kısa süreleri var.
      - “Washington'da düzenli olarak yürüyüşe ya da koşuya çıkıyorum.”
  - source_sentence: >-
      Orta yaylalar ve güney kıyıları arasındaki kontrast daha belirgin
      olamazdı.
    sentences:
      - >-
        İşitme Yardımı Uyumluluğu Müzakere Kuralları Komitesi, Federal İletişim
        Komisyonu'nun bir ürünüdür.
      - Dağlık ve sahil arasındaki kontrast kolayca işaretlendi.
      - Kontrast işaretlenemedi.
  - source_sentence: >-
      Bir 1997 Henry J. Kaiser Aile Vakfı anket yönetilen bakım planlarında
      Amerikalılar temelde kendi bakımı ile memnun olduğunu bulundu.
    sentences:
      - Kaplanları takip ederken çok sessiz olmalısın.
      - >-
        Henry Kaiser vakfı insanların sağlık hizmetlerinden hoşlandığını
        gösteriyor.
      - >-
        Henry Kaiser Vakfı insanların sağlık hizmetlerinden nefret ettiğini
        gösteriyor.
  - source_sentence: Eminim yapmışlardır.
    sentences:
      - Eminim öyle yapmışlardır.
      - Batı Teksas'ta 100 10 dereceydi.
      - Eminim yapmamışlardır.
  - source_sentence: >-
      Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi
      denedi ve daha az ilgileniyordu.
    sentences:
      - Oğlu her şeye olan ilgisini kaybediyordu.
      - Pek bir şey yapmadım.
      - Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.
datasets:
  - emrecan/all-nli-tr
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: SentenceTransformer based on Supabase/gte-small
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli dev
          type: all-nli-dev
        metrics:
          - type: cosine_accuracy
            value: 0.8551850318908691
            name: Cosine Accuracy

SentenceTransformer based on Supabase/gte-small

This is a sentence-transformers model finetuned from Supabase/gte-small on the all-nli-tr dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Supabase/gte-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: tr

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("x1saint/gte-small-triplet-tr")
# Run inference
sentences = [
    'Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi denedi ve daha az ilgileniyordu.',
    'Oğlu her şeye olan ilgisini kaybediyordu.',
    'Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.8552

Training Details

Training Dataset

all-nli-tr

  • Dataset: all-nli-tr at daeabfb
  • Size: 482,091 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 47.48 tokens
    • max: 301 tokens
    • min: 4 tokens
    • mean: 25.16 tokens
    • max: 80 tokens
    • min: 5 tokens
    • mean: 23.67 tokens
    • max: 90 tokens
  • Samples:
    anchor positive negative
    Mevsim boyunca ve sanırım senin seviyendeyken onları bir sonraki seviyeye düşürürsün. Eğer ebeveyn takımını çağırmaya karar verirlerse Braves üçlü A'dan birini çağırmaya karar verirlerse çifte bir adam onun yerine geçmeye gider ve bekar bir adam gelir. Eğer insanlar hatırlarsa, bir sonraki seviyeye düşersin. Hiçbir şeyi hatırlamazlar.
    Numaramızdan biri talimatlarınızı birazdan yerine getirecektir. Ekibimin bir üyesi emirlerinizi büyük bir hassasiyetle yerine getirecektir. Şu anda boş kimsek yok, bu yüzden sen de harekete geçmelisin.
    Bunu nereden biliyorsun? Bütün bunlar yine onların bilgileri. Bu bilgi onlara ait. Hiçbir bilgileri yok.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

all-nli-tr

  • Dataset: all-nli-tr at daeabfb
  • Size: 6,567 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 45.12 tokens
    • max: 201 tokens
    • min: 7 tokens
    • mean: 25.11 tokens
    • max: 98 tokens
    • min: 5 tokens
    • mean: 23.81 tokens
    • max: 64 tokens
  • Samples:
    anchor positive negative
    Bilemiyorum. Onunla ilgili karışık duygularım var. Bazen ondan hoşlanıyorum ama aynı zamanda birisinin onu dövmesini görmeyi seviyorum. Çoğunlukla ondan hoşlanıyorum, ama yine de birinin onu dövdüğünü görmekten zevk alıyorum. O benim favorim ve kimsenin onu yendiğini görmek istemiyorum.
    Sen ve arkadaşların burada hoş karşılanmaz, Severn söyledi. Severn orada insanların hoş karşılanmadığını söyledi. Severn orada insanların her zaman hoş karşılanacağını söyledi.
    Gecenin en aşağısı ne olduğundan emin değilim. Dün gece ne kadar soğuk oldu bilmiyorum. Dün gece hava 37 dereceydi.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 64
  • gradient_accumulation_steps: 4
  • learning_rate: 1e-05
  • warmup_ratio: 0.1
  • bf16: True
  • dataloader_num_workers: 4

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss all-nli-dev_cosine_accuracy
0.1327 500 9.1341 1.4261 0.7835
0.2655 1000 5.2529 1.2543 0.7967
0.3982 1500 4.5877 1.1583 0.8119
0.5310 2000 4.229 1.0974 0.8171
0.6637 2500 4.0158 1.0592 0.8238
0.7965 3000 3.7869 1.0161 0.8310
0.9292 3500 3.6862 0.9897 0.8372
1.0619 4000 3.5519 0.9751 0.8406
1.1946 4500 3.3986 0.9596 0.8421
1.3274 5000 3.3479 0.9377 0.8435
1.4601 5500 3.3104 0.9296 0.8465
1.5929 6000 3.2255 0.9178 0.8467
1.7256 6500 3.1998 0.9077 0.8514
1.8584 7000 3.1491 0.9017 0.8496
1.9911 7500 3.1337 0.8955 0.8511
2.1237 8000 3.052 0.8885 0.8526
2.2565 8500 2.9998 0.8836 0.8524
2.3892 9000 2.9835 0.8794 0.8517
2.5220 9500 2.9941 0.8778 0.8532
2.6547 10000 2.9704 0.8744 0.8555
2.7875 10500 2.9731 0.8723 0.8541
2.9202 11000 2.9221 0.8717 0.8552

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}