ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4517
  • Accuracy: 0.91

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3017 1.0 113 0.6180 0.78
0.5478 2.0 226 0.8031 0.77
0.3357 3.0 339 0.6511 0.87
0.1565 4.0 452 0.6858 0.87
0.0628 5.0 565 0.5638 0.86
0.0466 6.0 678 0.4399 0.91
0.0108 7.0 791 0.5120 0.88
0.0094 8.0 904 0.4854 0.89
0.0069 9.0 1017 0.4865 0.91
0.0061 10.0 1130 0.4674 0.91
0.0052 11.0 1243 0.4565 0.91
0.0027 12.0 1356 0.4557 0.91
0.0042 13.0 1469 0.4534 0.91
0.0028 14.0 1582 0.4523 0.91
0.0026 14.8711 1680 0.4517 0.91

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for wkCircle/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

Finetuned
(104)
this model

Dataset used to train wkCircle/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

Evaluation results