ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4517
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3017 | 1.0 | 113 | 0.6180 | 0.78 |
0.5478 | 2.0 | 226 | 0.8031 | 0.77 |
0.3357 | 3.0 | 339 | 0.6511 | 0.87 |
0.1565 | 4.0 | 452 | 0.6858 | 0.87 |
0.0628 | 5.0 | 565 | 0.5638 | 0.86 |
0.0466 | 6.0 | 678 | 0.4399 | 0.91 |
0.0108 | 7.0 | 791 | 0.5120 | 0.88 |
0.0094 | 8.0 | 904 | 0.4854 | 0.89 |
0.0069 | 9.0 | 1017 | 0.4865 | 0.91 |
0.0061 | 10.0 | 1130 | 0.4674 | 0.91 |
0.0052 | 11.0 | 1243 | 0.4565 | 0.91 |
0.0027 | 12.0 | 1356 | 0.4557 | 0.91 |
0.0042 | 13.0 | 1469 | 0.4534 | 0.91 |
0.0028 | 14.0 | 1582 | 0.4523 | 0.91 |
0.0026 | 14.8711 | 1680 | 0.4517 | 0.91 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for wkCircle/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Base model
MIT/ast-finetuned-audioset-10-10-0.4593