lewtun's picture
lewtun HF staff
Add evaluation results on glue dataset
c66d1e9
|
raw
history blame
2.6 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-sst2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.908256880733945
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8990825688073395
            verified: true
          - name: Precision
            type: precision
            value: 0.9009009009009009
            verified: true
          - name: Recall
            type: recall
            value: 0.9009009009009009
            verified: true
          - name: AUC
            type: auc
            value: 0.9643770522859308
            verified: true
          - name: F1
            type: f1
            value: 0.9009009009009009
            verified: true
          - name: loss
            type: loss
            value: 0.28972649574279785
            verified: true

distilbert-base-uncased-finetuned-sst2

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4493
  • Accuracy: 0.9083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1804 1.0 2105 0.2843 0.9025
0.1216 2.0 4210 0.3242 0.9025
0.0871 3.0 6315 0.3320 0.9060
0.0607 4.0 8420 0.3913 0.9025
0.0429 5.0 10525 0.4493 0.9083

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.12.0.dev20220409+cu115
  • Datasets 2.0.0
  • Tokenizers 0.12.0