XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Wolof

This model is part of our paper called:

  • Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages

Check the Space for more details.

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-wo")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-wo")
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-wo

Space using wietsedv/xlm-roberta-base-ft-udpos28-wo 1

Evaluation results

  • English Test accuracy on Universal Dependencies v2.8
    self-reported
    51.400
  • Dutch Test accuracy on Universal Dependencies v2.8
    self-reported
    52.200
  • German Test accuracy on Universal Dependencies v2.8
    self-reported
    38.400
  • Italian Test accuracy on Universal Dependencies v2.8
    self-reported
    51.200
  • French Test accuracy on Universal Dependencies v2.8
    self-reported
    48.800
  • Spanish Test accuracy on Universal Dependencies v2.8
    self-reported
    52.400
  • Russian Test accuracy on Universal Dependencies v2.8
    self-reported
    57.300
  • Swedish Test accuracy on Universal Dependencies v2.8
    self-reported
    49.000
  • Norwegian Test accuracy on Universal Dependencies v2.8
    self-reported
    49.100
  • Danish Test accuracy on Universal Dependencies v2.8
    self-reported
    52.400