XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Gothic
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-got")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-got")
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-got
Space using wietsedv/xlm-roberta-base-ft-udpos28-got 1
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported47.900
- Dutch Test accuracy on Universal Dependencies v2.8self-reported50.200
- German Test accuracy on Universal Dependencies v2.8self-reported38.900
- Italian Test accuracy on Universal Dependencies v2.8self-reported46.800
- French Test accuracy on Universal Dependencies v2.8self-reported50.200
- Spanish Test accuracy on Universal Dependencies v2.8self-reported51.300
- Russian Test accuracy on Universal Dependencies v2.8self-reported52.400
- Swedish Test accuracy on Universal Dependencies v2.8self-reported51.500
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported49.100
- Danish Test accuracy on Universal Dependencies v2.8self-reported50.800