|
--- |
|
tags: |
|
- audio-classification |
|
- generated_from_trainer |
|
datasets: |
|
- superb |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: trillsson3-ft-keyword-spotting-14 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# trillsson3-ft-keyword-spotting-14 |
|
|
|
This model is a fine-tuned version of [vumichien/nonsemantic-speech-trillsson3](https://huggingface.co/vumichien/nonsemantic-speech-trillsson3) on the superb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3015 |
|
- Accuracy: 0.9150 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 0 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 1.2824 | 1.0 | 1597 | 0.7818 | 0.6892 | |
|
| 0.8003 | 2.0 | 3194 | 0.4443 | 0.8735 | |
|
| 0.7232 | 3.0 | 4791 | 0.3728 | 0.8833 | |
|
| 0.73 | 4.0 | 6388 | 0.3465 | 0.8973 | |
|
| 0.7015 | 5.0 | 7985 | 0.3211 | 0.9109 | |
|
| 0.6981 | 6.0 | 9582 | 0.3200 | 0.9081 | |
|
| 0.6807 | 7.0 | 11179 | 0.3209 | 0.9059 | |
|
| 0.6873 | 8.0 | 12776 | 0.3206 | 0.9022 | |
|
| 0.6416 | 9.0 | 14373 | 0.3124 | 0.9057 | |
|
| 0.6698 | 10.0 | 15970 | 0.3288 | 0.8950 | |
|
| 0.716 | 11.0 | 17567 | 0.3147 | 0.8998 | |
|
| 0.6514 | 12.0 | 19164 | 0.3034 | 0.9112 | |
|
| 0.6513 | 13.0 | 20761 | 0.3091 | 0.9092 | |
|
| 0.652 | 14.0 | 22358 | 0.3056 | 0.9100 | |
|
| 0.7105 | 15.0 | 23955 | 0.3015 | 0.9150 | |
|
| 0.6337 | 16.0 | 25552 | 0.3070 | 0.9091 | |
|
| 0.63 | 17.0 | 27149 | 0.3018 | 0.9135 | |
|
| 0.6672 | 18.0 | 28746 | 0.3084 | 0.9088 | |
|
| 0.6479 | 19.0 | 30343 | 0.3060 | 0.9101 | |
|
| 0.6658 | 20.0 | 31940 | 0.3072 | 0.9089 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|