Vignesh finetuned bge
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("viggypoker1/Vignesh-finetuned-bge")
# Run inference
sentences = [
'What was the total premiums revenue for the Insurance segment in 2023?',
'Insurance segment premiums revenue increased $13.6 billion, or 15.5%, from $87.7 billion in the 2022 period to $101.3 billion in the 2023 period.',
'On a quarterly basis, we employ a consistent, systematic and rational methodology to assess the adequacy of our warranty liability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6386 |
cosine_accuracy@3 | 0.8057 |
cosine_accuracy@5 | 0.8514 |
cosine_accuracy@10 | 0.8886 |
cosine_precision@1 | 0.6386 |
cosine_precision@3 | 0.2686 |
cosine_precision@5 | 0.1703 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.6386 |
cosine_recall@3 | 0.8057 |
cosine_recall@5 | 0.8514 |
cosine_recall@10 | 0.8886 |
cosine_ndcg@10 | 0.7673 |
cosine_mrr@10 | 0.7279 |
cosine_map@100 | 0.7324 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6429 |
cosine_accuracy@3 | 0.7957 |
cosine_accuracy@5 | 0.8429 |
cosine_accuracy@10 | 0.8786 |
cosine_precision@1 | 0.6429 |
cosine_precision@3 | 0.2652 |
cosine_precision@5 | 0.1686 |
cosine_precision@10 | 0.0879 |
cosine_recall@1 | 0.6429 |
cosine_recall@3 | 0.7957 |
cosine_recall@5 | 0.8429 |
cosine_recall@10 | 0.8786 |
cosine_ndcg@10 | 0.7649 |
cosine_mrr@10 | 0.7279 |
cosine_map@100 | 0.733 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6414 |
cosine_accuracy@3 | 0.8 |
cosine_accuracy@5 | 0.84 |
cosine_accuracy@10 | 0.8814 |
cosine_precision@1 | 0.6414 |
cosine_precision@3 | 0.2667 |
cosine_precision@5 | 0.168 |
cosine_precision@10 | 0.0881 |
cosine_recall@1 | 0.6414 |
cosine_recall@3 | 0.8 |
cosine_recall@5 | 0.84 |
cosine_recall@10 | 0.8814 |
cosine_ndcg@10 | 0.765 |
cosine_mrr@10 | 0.7273 |
cosine_map@100 | 0.732 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6171 |
cosine_accuracy@3 | 0.7786 |
cosine_accuracy@5 | 0.8243 |
cosine_accuracy@10 | 0.8729 |
cosine_precision@1 | 0.6171 |
cosine_precision@3 | 0.2595 |
cosine_precision@5 | 0.1649 |
cosine_precision@10 | 0.0873 |
cosine_recall@1 | 0.6171 |
cosine_recall@3 | 0.7786 |
cosine_recall@5 | 0.8243 |
cosine_recall@10 | 0.8729 |
cosine_ndcg@10 | 0.7478 |
cosine_mrr@10 | 0.7076 |
cosine_map@100 | 0.7124 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.59 |
cosine_accuracy@3 | 0.7486 |
cosine_accuracy@5 | 0.7943 |
cosine_accuracy@10 | 0.8671 |
cosine_precision@1 | 0.59 |
cosine_precision@3 | 0.2495 |
cosine_precision@5 | 0.1589 |
cosine_precision@10 | 0.0867 |
cosine_recall@1 | 0.59 |
cosine_recall@3 | 0.7486 |
cosine_recall@5 | 0.7943 |
cosine_recall@10 | 0.8671 |
cosine_ndcg@10 | 0.7258 |
cosine_mrr@10 | 0.6811 |
cosine_map@100 | 0.6856 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 311,351 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 20.46 tokens
- max: 45 tokens
- min: 4 tokens
- mean: 45.94 tokens
- max: 439 tokens
- Samples:
anchor positive What percentage of net revenues came from Mutual Funds, ETFs, and Collective Trust Funds (CTFs) in 2023?
Mutual Funds, ETFs, and Collective Trust Funds (CTFs) contributed 13% to the net revenues in 2023.
What was the amount of additional stock-based compensation expense recognized due to the Type 3 modification in the year ended December 31, 2023?
A special award grant on February 23, 2023, resulted in a Type 3 modification of the 2022 PSU awards, leading to an additional stock-based compensation expense of $20.2 million recognized in that year.
What was the percentage point decrease in earnings from operations as a percentage of net revenue for the Printing segment in the fiscal year 2023?
Printing earnings from operations as a percentage of net revenue decreased by 0.2 percentage points in the fiscal year 2023.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
json
- Dataset: json
- Size: 700 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 700 samples:
anchor positive type string string details - min: 10 tokens
- mean: 20.54 tokens
- max: 40 tokens
- min: 8 tokens
- mean: 47.84 tokens
- max: 371 tokens
- Samples:
anchor positive How does GameStop optimize the efficiency of its product distribution?
We use our distribution facilities, store locations and inventory management systems to optimize the efficiency of the flow of products to our stores and customers, enhance fulfillment efficiency and optimize in-stock and overall investment in inventory.
What was the net production increase percentage of Chevron's worldwide oil-equivalent from 2022 to 2023?
For the year 2023, Chevron's worldwide oil-equivalent production was 3.1 million barrels per day, marking an increase of about 4 percent from the 2022 level.
How has Tesla sought to increase the affordability of their vehicles in international markets?
Internationally, we also have manufacturing facilities in China (Gigafactory Shanghai) and Germany (Gigafactory Berlin-Brandenburg), which allows us to increase the affordability of our vehicles for customers in local markets by reducing transportation and manufacturing costs and eliminating the impact of unfavorable tariffs.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 128per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|---|
0.0658 | 10 | 12.7378 | - | - | - | - | - | - |
0.1315 | 20 | 16.125 | - | - | - | - | - | - |
0.1973 | 30 | 19.5213 | - | - | - | - | - | - |
0.2630 | 40 | 21.3366 | - | - | - | - | - | - |
0.3288 | 50 | 18.9311 | - | - | - | - | - | - |
0.3946 | 60 | 5.5988 | - | - | - | - | - | - |
0.4603 | 70 | 2.9878 | - | - | - | - | - | - |
0.5261 | 80 | 2.0073 | - | - | - | - | - | - |
0.5919 | 90 | 1.5752 | - | - | - | - | - | - |
0.6576 | 100 | 1.3491 | - | - | - | - | - | - |
0.7234 | 110 | 1.1473 | - | - | - | - | - | - |
0.7891 | 120 | 1.0644 | - | - | - | - | - | - |
0.8549 | 130 | 0.9987 | - | - | - | - | - | - |
0.9207 | 140 | 0.8948 | - | - | - | - | - | - |
0.9864 | 150 | 0.877 | - | - | - | - | - | - |
0.9996 | 152 | - | 0.3206 | 0.6646 | 0.6955 | 0.7089 | 0.6391 | 0.7145 |
1.0522 | 160 | 7.7524 | - | - | - | - | - | - |
1.1180 | 170 | 12.5198 | - | - | - | - | - | - |
1.1837 | 180 | 16.8236 | - | - | - | - | - | - |
1.2495 | 190 | 18.7345 | - | - | - | - | - | - |
1.3152 | 200 | 18.986 | - | - | - | - | - | - |
1.3810 | 210 | 5.3162 | - | - | - | - | - | - |
1.4468 | 220 | 1.1987 | - | - | - | - | - | - |
1.5125 | 230 | 0.8596 | - | - | - | - | - | - |
1.5783 | 240 | 0.7595 | - | - | - | - | - | - |
1.6441 | 250 | 0.7377 | - | - | - | - | - | - |
1.7098 | 260 | 0.6657 | - | - | - | - | - | - |
1.7756 | 270 | 0.6838 | - | - | - | - | - | - |
1.8413 | 280 | 0.6813 | - | - | - | - | - | - |
1.9071 | 290 | 0.6322 | - | - | - | - | - | - |
1.9729 | 300 | 0.6296 | - | - | - | - | - | - |
1.9992 | 304 | - | 0.2404 | 0.6884 | 0.7126 | 0.7240 | 0.6529 | 0.7285 |
2.0386 | 310 | 4.0272 | - | - | - | - | - | - |
2.1044 | 320 | 11.576 | - | - | - | - | - | - |
2.1702 | 330 | 14.1756 | - | - | - | - | - | - |
2.2359 | 340 | 17.5422 | - | - | - | - | - | - |
2.3017 | 350 | 19.0518 | - | - | - | - | - | - |
2.3674 | 360 | 7.1039 | - | - | - | - | - | - |
2.4332 | 370 | 0.9404 | - | - | - | - | - | - |
2.4990 | 380 | 0.7094 | - | - | - | - | - | - |
2.5647 | 390 | 0.5907 | - | - | - | - | - | - |
2.6305 | 400 | 0.6083 | - | - | - | - | - | - |
2.6963 | 410 | 0.5486 | - | - | - | - | - | - |
2.7620 | 420 | 0.5529 | - | - | - | - | - | - |
2.8278 | 430 | 0.5734 | - | - | - | - | - | - |
2.8935 | 440 | 0.5653 | - | - | - | - | - | - |
2.9593 | 450 | 0.534 | - | - | - | - | - | - |
2.9988 | 456 | - | 0.2078 | 0.7028 | 0.7266 | 0.7336 | 0.6671 | 0.7349 |
3.0251 | 460 | 1.5518 | - | - | - | - | - | - |
3.0908 | 470 | 10.991 | - | - | - | - | - | - |
3.1566 | 480 | 12.393 | - | - | - | - | - | - |
3.2224 | 490 | 16.9122 | - | - | - | - | - | - |
3.2881 | 500 | 18.3968 | - | - | - | - | - | - |
3.3539 | 510 | 10.9782 | - | - | - | - | - | - |
3.4196 | 520 | 0.654 | - | - | - | - | - | - |
3.4854 | 530 | 0.607 | - | - | - | - | - | - |
3.5512 | 540 | 0.5474 | - | - | - | - | - | - |
3.6169 | 550 | 0.5771 | - | - | - | - | - | - |
3.6827 | 560 | 0.5364 | - | - | - | - | - | - |
3.7485 | 570 | 0.5323 | - | - | - | - | - | - |
3.8142 | 580 | 0.5458 | - | - | - | - | - | - |
3.8800 | 590 | 0.5738 | - | - | - | - | - | - |
3.9457 | 600 | 0.5353 | - | - | - | - | - | - |
3.9984 | 608 | - | 0.1882 | 0.7124 | 0.732 | 0.733 | 0.6856 | 0.7324 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for viggypoker1/Vignesh-finetuned-bge
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.639
- Cosine Accuracy@3 on dim 768self-reported0.806
- Cosine Accuracy@5 on dim 768self-reported0.851
- Cosine Accuracy@10 on dim 768self-reported0.889
- Cosine Precision@1 on dim 768self-reported0.639
- Cosine Precision@3 on dim 768self-reported0.269
- Cosine Precision@5 on dim 768self-reported0.170
- Cosine Precision@10 on dim 768self-reported0.089
- Cosine Recall@1 on dim 768self-reported0.639
- Cosine Recall@3 on dim 768self-reported0.806