Vignesh finetuned bge

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("viggypoker1/Vignesh-finetuned-bge")
# Run inference
sentences = [
    'What was the total premiums revenue for the Insurance segment in 2023?',
    'Insurance segment premiums revenue increased $13.6 billion, or 15.5%, from $87.7 billion in the 2022 period to $101.3 billion in the 2023 period.',
    'On a quarterly basis, we employ a consistent, systematic and rational methodology to assess the adequacy of our warranty liability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6386
cosine_accuracy@3 0.8057
cosine_accuracy@5 0.8514
cosine_accuracy@10 0.8886
cosine_precision@1 0.6386
cosine_precision@3 0.2686
cosine_precision@5 0.1703
cosine_precision@10 0.0889
cosine_recall@1 0.6386
cosine_recall@3 0.8057
cosine_recall@5 0.8514
cosine_recall@10 0.8886
cosine_ndcg@10 0.7673
cosine_mrr@10 0.7279
cosine_map@100 0.7324

Information Retrieval

Metric Value
cosine_accuracy@1 0.6429
cosine_accuracy@3 0.7957
cosine_accuracy@5 0.8429
cosine_accuracy@10 0.8786
cosine_precision@1 0.6429
cosine_precision@3 0.2652
cosine_precision@5 0.1686
cosine_precision@10 0.0879
cosine_recall@1 0.6429
cosine_recall@3 0.7957
cosine_recall@5 0.8429
cosine_recall@10 0.8786
cosine_ndcg@10 0.7649
cosine_mrr@10 0.7279
cosine_map@100 0.733

Information Retrieval

Metric Value
cosine_accuracy@1 0.6414
cosine_accuracy@3 0.8
cosine_accuracy@5 0.84
cosine_accuracy@10 0.8814
cosine_precision@1 0.6414
cosine_precision@3 0.2667
cosine_precision@5 0.168
cosine_precision@10 0.0881
cosine_recall@1 0.6414
cosine_recall@3 0.8
cosine_recall@5 0.84
cosine_recall@10 0.8814
cosine_ndcg@10 0.765
cosine_mrr@10 0.7273
cosine_map@100 0.732

Information Retrieval

Metric Value
cosine_accuracy@1 0.6171
cosine_accuracy@3 0.7786
cosine_accuracy@5 0.8243
cosine_accuracy@10 0.8729
cosine_precision@1 0.6171
cosine_precision@3 0.2595
cosine_precision@5 0.1649
cosine_precision@10 0.0873
cosine_recall@1 0.6171
cosine_recall@3 0.7786
cosine_recall@5 0.8243
cosine_recall@10 0.8729
cosine_ndcg@10 0.7478
cosine_mrr@10 0.7076
cosine_map@100 0.7124

Information Retrieval

Metric Value
cosine_accuracy@1 0.59
cosine_accuracy@3 0.7486
cosine_accuracy@5 0.7943
cosine_accuracy@10 0.8671
cosine_precision@1 0.59
cosine_precision@3 0.2495
cosine_precision@5 0.1589
cosine_precision@10 0.0867
cosine_recall@1 0.59
cosine_recall@3 0.7486
cosine_recall@5 0.7943
cosine_recall@10 0.8671
cosine_ndcg@10 0.7258
cosine_mrr@10 0.6811
cosine_map@100 0.6856

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 311,351 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 7 tokens
    • mean: 20.46 tokens
    • max: 45 tokens
    • min: 4 tokens
    • mean: 45.94 tokens
    • max: 439 tokens
  • Samples:
    anchor positive
    What percentage of net revenues came from Mutual Funds, ETFs, and Collective Trust Funds (CTFs) in 2023? Mutual Funds, ETFs, and Collective Trust Funds (CTFs) contributed 13% to the net revenues in 2023.
    What was the amount of additional stock-based compensation expense recognized due to the Type 3 modification in the year ended December 31, 2023? A special award grant on February 23, 2023, resulted in a Type 3 modification of the 2022 PSU awards, leading to an additional stock-based compensation expense of $20.2 million recognized in that year.
    What was the percentage point decrease in earnings from operations as a percentage of net revenue for the Printing segment in the fiscal year 2023? Printing earnings from operations as a percentage of net revenue decreased by 0.2 percentage points in the fiscal year 2023.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 700 evaluation samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 700 samples:
    anchor positive
    type string string
    details
    • min: 10 tokens
    • mean: 20.54 tokens
    • max: 40 tokens
    • min: 8 tokens
    • mean: 47.84 tokens
    • max: 371 tokens
  • Samples:
    anchor positive
    How does GameStop optimize the efficiency of its product distribution? We use our distribution facilities, store locations and inventory management systems to optimize the efficiency of the flow of products to our stores and customers, enhance fulfillment efficiency and optimize in-stock and overall investment in inventory.
    What was the net production increase percentage of Chevron's worldwide oil-equivalent from 2022 to 2023? For the year 2023, Chevron's worldwide oil-equivalent production was 3.1 million barrels per day, marking an increase of about 4 percent from the 2022 level.
    How has Tesla sought to increase the affordability of their vehicles in international markets? Internationally, we also have manufacturing facilities in China (Gigafactory Shanghai) and Germany (Gigafactory Berlin-Brandenburg), which allows us to increase the affordability of our vehicles for customers in local markets by reducing transportation and manufacturing costs and eliminating the impact of unfavorable tariffs.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.0658 10 12.7378 - - - - - -
0.1315 20 16.125 - - - - - -
0.1973 30 19.5213 - - - - - -
0.2630 40 21.3366 - - - - - -
0.3288 50 18.9311 - - - - - -
0.3946 60 5.5988 - - - - - -
0.4603 70 2.9878 - - - - - -
0.5261 80 2.0073 - - - - - -
0.5919 90 1.5752 - - - - - -
0.6576 100 1.3491 - - - - - -
0.7234 110 1.1473 - - - - - -
0.7891 120 1.0644 - - - - - -
0.8549 130 0.9987 - - - - - -
0.9207 140 0.8948 - - - - - -
0.9864 150 0.877 - - - - - -
0.9996 152 - 0.3206 0.6646 0.6955 0.7089 0.6391 0.7145
1.0522 160 7.7524 - - - - - -
1.1180 170 12.5198 - - - - - -
1.1837 180 16.8236 - - - - - -
1.2495 190 18.7345 - - - - - -
1.3152 200 18.986 - - - - - -
1.3810 210 5.3162 - - - - - -
1.4468 220 1.1987 - - - - - -
1.5125 230 0.8596 - - - - - -
1.5783 240 0.7595 - - - - - -
1.6441 250 0.7377 - - - - - -
1.7098 260 0.6657 - - - - - -
1.7756 270 0.6838 - - - - - -
1.8413 280 0.6813 - - - - - -
1.9071 290 0.6322 - - - - - -
1.9729 300 0.6296 - - - - - -
1.9992 304 - 0.2404 0.6884 0.7126 0.7240 0.6529 0.7285
2.0386 310 4.0272 - - - - - -
2.1044 320 11.576 - - - - - -
2.1702 330 14.1756 - - - - - -
2.2359 340 17.5422 - - - - - -
2.3017 350 19.0518 - - - - - -
2.3674 360 7.1039 - - - - - -
2.4332 370 0.9404 - - - - - -
2.4990 380 0.7094 - - - - - -
2.5647 390 0.5907 - - - - - -
2.6305 400 0.6083 - - - - - -
2.6963 410 0.5486 - - - - - -
2.7620 420 0.5529 - - - - - -
2.8278 430 0.5734 - - - - - -
2.8935 440 0.5653 - - - - - -
2.9593 450 0.534 - - - - - -
2.9988 456 - 0.2078 0.7028 0.7266 0.7336 0.6671 0.7349
3.0251 460 1.5518 - - - - - -
3.0908 470 10.991 - - - - - -
3.1566 480 12.393 - - - - - -
3.2224 490 16.9122 - - - - - -
3.2881 500 18.3968 - - - - - -
3.3539 510 10.9782 - - - - - -
3.4196 520 0.654 - - - - - -
3.4854 530 0.607 - - - - - -
3.5512 540 0.5474 - - - - - -
3.6169 550 0.5771 - - - - - -
3.6827 560 0.5364 - - - - - -
3.7485 570 0.5323 - - - - - -
3.8142 580 0.5458 - - - - - -
3.8800 590 0.5738 - - - - - -
3.9457 600 0.5353 - - - - - -
3.9984 608 - 0.1882 0.7124 0.732 0.733 0.6856 0.7324
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 2.19.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for viggypoker1/Vignesh-finetuned-bge

Finetuned
(346)
this model

Evaluation results