Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: 01-ai/Yi-1.5-9B-Chat-16K
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 96259b108ef27e70_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/96259b108ef27e70_train_data.json
  type:
    field_input: comment
    field_instruction: prompt
    field_output: chosen
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: vertings6/c51eb460-5b57-4673-9eb0-28f3df06bf96
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/96259b108ef27e70_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_hf
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e0b49cff-6042-4e94-8cd0-e5ed21e2fe6e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e0b49cff-6042-4e94-8cd0-e5ed21e2fe6e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

c51eb460-5b57-4673-9eb0-28f3df06bf96

This model is a fine-tuned version of 01-ai/Yi-1.5-9B-Chat-16K on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3119

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0012 1 0.7029
0.6731 0.0092 8 0.5426
0.3922 0.0185 16 0.3557
0.3164 0.0277 24 0.3119

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for vertings6/c51eb460-5b57-4673-9eb0-28f3df06bf96

Adapter
(342)
this model