BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("uonyeka/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The return on equity for 2023 was 27.0%.',
'What was the return on equity for 2023?',
'What was the total net property and equipment as of December 31, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.84 |
cosine_accuracy@5 | 0.8829 |
cosine_accuracy@10 | 0.9214 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.28 |
cosine_precision@5 | 0.1766 |
cosine_precision@10 | 0.0921 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.84 |
cosine_recall@5 | 0.8829 |
cosine_recall@10 | 0.9214 |
cosine_ndcg@10 | 0.8149 |
cosine_mrr@10 | 0.7804 |
cosine_map@100 | 0.7839 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.8386 |
cosine_accuracy@5 | 0.8871 |
cosine_accuracy@10 | 0.9257 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.2795 |
cosine_precision@5 | 0.1774 |
cosine_precision@10 | 0.0926 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.8386 |
cosine_recall@5 | 0.8871 |
cosine_recall@10 | 0.9257 |
cosine_ndcg@10 | 0.8153 |
cosine_mrr@10 | 0.7797 |
cosine_map@100 | 0.783 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7057 |
cosine_accuracy@3 | 0.8329 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.7057 |
cosine_precision@3 | 0.2776 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.7057 |
cosine_recall@3 | 0.8329 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8097 |
cosine_mrr@10 | 0.777 |
cosine_map@100 | 0.7811 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.68 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8671 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.68 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1734 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.68 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8671 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.7972 |
cosine_mrr@10 | 0.7608 |
cosine_map@100 | 0.7644 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6614 |
cosine_accuracy@3 | 0.7943 |
cosine_accuracy@5 | 0.83 |
cosine_accuracy@10 | 0.8757 |
cosine_precision@1 | 0.6614 |
cosine_precision@3 | 0.2648 |
cosine_precision@5 | 0.166 |
cosine_precision@10 | 0.0876 |
cosine_recall@1 | 0.6614 |
cosine_recall@3 | 0.7943 |
cosine_recall@5 | 0.83 |
cosine_recall@10 | 0.8757 |
cosine_ndcg@10 | 0.7702 |
cosine_mrr@10 | 0.7363 |
cosine_map@100 | 0.7414 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 45.2 tokens
- max: 439 tokens
- min: 7 tokens
- mean: 20.41 tokens
- max: 43 tokens
- Samples:
positive anchor The cash equities rate per contract (per 100 shares) for NYSE increased by 6%, from $0.045 in 2022 to $0.048 in 2023.
What was the change in the rate per contract for NYSE cash equities from 2022 to 2023?
Item 3 specifies that the information regarding Legal Proceedings is sourced from Note 19 of the Notes to Consolidated Financial Statements included in Item 8.
What is the content source for the information requested by Item 3 concerning Legal Proceedings?
North America's operating income for the fiscal year ended October 1, 2023, was $5,495.7 million, up from $4,486.5 million in fiscal 2022.
What was the increase in North America's operating income from fiscal 2022 to fiscal 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.575 | - | - | - | - | - |
0.9746 | 12 | - | 0.7437 | 0.7623 | 0.7682 | 0.7114 | 0.7652 |
1.6244 | 20 | 0.697 | - | - | - | - | - |
1.9492 | 24 | - | 0.7619 | 0.7760 | 0.7824 | 0.7346 | 0.7826 |
2.4365 | 30 | 0.4724 | - | - | - | - | - |
2.9239 | 36 | - | 0.7639 | 0.7808 | 0.7831 | 0.7398 | 0.7834 |
3.2487 | 40 | 0.3999 | - | - | - | - | - |
3.8985 | 48 | - | 0.7644 | 0.7811 | 0.783 | 0.7414 | 0.7839 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for uonyeka/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.703
- Cosine Accuracy@3 on dim 768self-reported0.840
- Cosine Accuracy@5 on dim 768self-reported0.883
- Cosine Accuracy@10 on dim 768self-reported0.921
- Cosine Precision@1 on dim 768self-reported0.703
- Cosine Precision@3 on dim 768self-reported0.280
- Cosine Precision@5 on dim 768self-reported0.177
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.703
- Cosine Recall@3 on dim 768self-reported0.840