yihanwang617's picture
Model save
934ea4c verified
|
raw
history blame
2.4 kB
metadata
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
tags:
  - trl
  - sft
  - alignment-handbook
  - generated_from_trainer
model-index:
  - name: llama-3-qlora-ultrachat-200k-processed-indicator-0.6
    results: []

llama-3-qlora-ultrachat-200k-processed-indicator-0.6

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0200

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.0614 0.0616 200 1.0632
1.0689 0.1232 400 1.0476
1.0053 0.1847 600 1.0413
1.0446 0.2463 800 1.0366
1.0091 0.3079 1000 1.0336
1.0093 0.3695 1200 1.0310
1.0086 0.4311 1400 1.0291
1.0362 0.4926 1600 1.0270
1.0155 0.5542 1800 1.0256
1.0138 0.6158 2000 1.0240
1.0392 0.6774 2200 1.0226
1.0079 0.7389 2400 1.0216
1.0139 0.8005 2600 1.0208
0.9857 0.8621 2800 1.0204
1.0258 0.9237 3000 1.0201
1.0147 0.9853 3200 1.0200

Framework versions

  • PEFT 0.12.0
  • Transformers 4.40.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1