See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a13229aa3f90d85d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a13229aa3f90d85d_train_data.json
type:
field_input: ''
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: false
hub_model_id: tuantmdev/0932dd87-3c70-47f9-9fa5-e9665e10f3bf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 40
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/a13229aa3f90d85d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_strategy: best
saves_per_epoch: 5
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 77cb6bad-3310-4edc-a230-a2a1aa28652b
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: 77cb6bad-3310-4edc-a230-a2a1aa28652b
warmup_steps: 80
weight_decay: 0.01
xformers_attention: null
0932dd87-3c70-47f9-9fa5-e9665e10f3bf
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 80
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 1.8161 |
1.6789 | 0.0084 | 40 | 1.7657 |
1.4912 | 0.0168 | 80 | 1.4250 |
1.2154 | 0.0252 | 120 | 1.2271 |
1.1632 | 0.0335 | 160 | 1.1926 |
1.1496 | 0.0419 | 200 | 1.1885 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.