FatCat87's picture
End of training
7235d8f verified
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: heegyu/WizardVicuna-open-llama-3b-v2
model-index:
- name: f04e564d-fd64-4ad3-b850-847879330a35
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: heegyu/WizardVicuna-open-llama-3b-v2
bf16: auto
datasets:
- data_files:
- c80922e5615264fa_train_data.json
ds_type: json
format: custom
path: c80922e5615264fa_train_data.json
type:
field: null
field_input: input
field_instruction: instruction
field_output: output
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 2
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/f04e564d-fd64-4ad3-b850-847879330a35
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out/taopanda-3_db77949d-e35c-457a-8370-2bfddc5702da
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 68605
sequence_len: 4096
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-3_db77949d-e35c-457a-8370-2bfddc5702da
wandb_project: subnet56
wandb_runid: taopanda-3_db77949d-e35c-457a-8370-2bfddc5702da
wandb_watch: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/cl340gnn)
# f04e564d-fd64-4ad3-b850-847879330a35
This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 68605
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4539 | 0.1212 | 1 | 1.4461 |
| 1.3463 | 0.4848 | 4 | 1.3584 |
| 1.258 | 0.9697 | 8 | 1.2859 |
| 1.2372 | 1.3939 | 12 | 1.2540 |
| 1.2207 | 1.8788 | 16 | 1.2477 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1