|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnext-base-384-22k-1k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
model-index: |
|
- name: convnext-base-384-22k-1k-Kontur-competition-1.3K |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnext-base-384-22k-1k-Kontur-competition-1.3K |
|
|
|
This model is a fine-tuned version of [facebook/convnext-base-384-22k-1k](https://huggingface.co/facebook/convnext-base-384-22k-1k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0003 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 0.95 | 9 | 0.5273 | |
|
| 0.6611 | 2.0 | 19 | 0.1518 | |
|
| 0.2686 | 2.95 | 28 | 0.0266 | |
|
| 0.0899 | 4.0 | 38 | 0.0066 | |
|
| 0.0379 | 4.95 | 47 | 0.0025 | |
|
| 0.0202 | 6.0 | 57 | 0.0020 | |
|
| 0.0048 | 6.95 | 66 | 0.0010 | |
|
| 0.0056 | 8.0 | 76 | 0.0011 | |
|
| 0.0011 | 8.95 | 85 | 0.0005 | |
|
| 0.0017 | 10.0 | 95 | 0.0014 | |
|
| 0.0076 | 10.95 | 104 | 0.0004 | |
|
| 0.0018 | 12.0 | 114 | 0.0003 | |
|
| 0.0027 | 12.95 | 123 | 0.0003 | |
|
| 0.0008 | 14.0 | 133 | 0.0003 | |
|
| 0.0008 | 14.21 | 135 | 0.0003 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|