|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
from copy import deepcopy |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import CLIPTextModel, CLIPTokenizer, AutoTokenizer, AutoModel |
|
from transformers.utils import ModelOutput |
|
from transformers.models.llama import LlamaModel |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
|
|
|
|
|
|
PROMPT_TEMPLATE_ENCODE = ( |
|
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, " |
|
"quantity, text, spatial relationships of the objects and background:<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" |
|
) |
|
PROMPT_TEMPLATE_ENCODE_VIDEO = ( |
|
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " |
|
"1. The main content and theme of the video." |
|
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." |
|
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." |
|
"4. background environment, light, style and atmosphere." |
|
"5. camera angles, movements, and transitions used in the video:<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" |
|
) |
|
|
|
NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion" |
|
|
|
PROMPT_TEMPLATE = { |
|
"dit-llm-encode": { |
|
"template": PROMPT_TEMPLATE_ENCODE, |
|
"crop_start": 36, |
|
}, |
|
"dit-llm-encode-video": { |
|
"template": PROMPT_TEMPLATE_ENCODE_VIDEO, |
|
"crop_start": 95, |
|
}, |
|
} |
|
|
|
|
|
def use_default(value, default): |
|
return value if value is not None else default |
|
|
|
|
|
def load_text_encoder( |
|
text_encoder_type: str, |
|
text_encoder_path: str, |
|
text_encoder_dtype: Optional[Union[str, torch.dtype]] = None, |
|
): |
|
logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}") |
|
|
|
|
|
dtype = text_encoder_dtype |
|
if text_encoder_type == "clipL": |
|
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path, torch_dtype=dtype) |
|
text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm |
|
elif text_encoder_type == "llm": |
|
text_encoder = AutoModel.from_pretrained(text_encoder_path, low_cpu_mem_usage=True, torch_dtype=dtype) |
|
text_encoder.final_layer_norm = text_encoder.norm |
|
else: |
|
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}") |
|
|
|
|
|
if dtype is not None: |
|
text_encoder = text_encoder.to(dtype=dtype) |
|
|
|
text_encoder.requires_grad_(False) |
|
|
|
logger.info(f"Text encoder to dtype: {text_encoder.dtype}") |
|
return text_encoder, text_encoder_path |
|
|
|
|
|
def load_tokenizer(tokenizer_type, tokenizer_path=None, padding_side="right"): |
|
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}") |
|
|
|
if tokenizer_type == "clipL": |
|
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77) |
|
elif tokenizer_type == "llm": |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, padding_side=padding_side) |
|
else: |
|
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}") |
|
|
|
return tokenizer, tokenizer_path |
|
|
|
|
|
@dataclass |
|
class TextEncoderModelOutput(ModelOutput): |
|
""" |
|
Base class for model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
text_outputs (`list`, *optional*, returned when `return_texts=True` is passed): |
|
List of decoded texts. |
|
""" |
|
|
|
hidden_state: torch.FloatTensor = None |
|
attention_mask: Optional[torch.LongTensor] = None |
|
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
text_outputs: Optional[list] = None |
|
|
|
|
|
class TextEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
text_encoder_type: str, |
|
max_length: int, |
|
text_encoder_dtype: Optional[Union[str, torch.dtype]] = None, |
|
text_encoder_path: Optional[str] = None, |
|
tokenizer_type: Optional[str] = None, |
|
tokenizer_path: Optional[str] = None, |
|
output_key: Optional[str] = None, |
|
use_attention_mask: bool = True, |
|
input_max_length: Optional[int] = None, |
|
prompt_template: Optional[dict] = None, |
|
prompt_template_video: Optional[dict] = None, |
|
hidden_state_skip_layer: Optional[int] = None, |
|
apply_final_norm: bool = False, |
|
reproduce: bool = False, |
|
): |
|
super().__init__() |
|
self.text_encoder_type = text_encoder_type |
|
self.max_length = max_length |
|
|
|
self.model_path = text_encoder_path |
|
self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type |
|
self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path |
|
self.use_attention_mask = use_attention_mask |
|
if prompt_template_video is not None: |
|
assert use_attention_mask is True, "Attention mask is True required when training videos." |
|
self.input_max_length = input_max_length if input_max_length is not None else max_length |
|
self.prompt_template = prompt_template |
|
self.prompt_template_video = prompt_template_video |
|
self.hidden_state_skip_layer = hidden_state_skip_layer |
|
self.apply_final_norm = apply_final_norm |
|
self.reproduce = reproduce |
|
|
|
self.use_template = self.prompt_template is not None |
|
if self.use_template: |
|
assert ( |
|
isinstance(self.prompt_template, dict) and "template" in self.prompt_template |
|
), f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}" |
|
assert "{}" in str(self.prompt_template["template"]), ( |
|
"`prompt_template['template']` must contain a placeholder `{}` for the input text, " |
|
f"got {self.prompt_template['template']}" |
|
) |
|
|
|
self.use_video_template = self.prompt_template_video is not None |
|
if self.use_video_template: |
|
if self.prompt_template_video is not None: |
|
assert ( |
|
isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video |
|
), f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}" |
|
assert "{}" in str(self.prompt_template_video["template"]), ( |
|
"`prompt_template_video['template']` must contain a placeholder `{}` for the input text, " |
|
f"got {self.prompt_template_video['template']}" |
|
) |
|
|
|
if "t5" in text_encoder_type: |
|
self.output_key = output_key or "last_hidden_state" |
|
elif "clip" in text_encoder_type: |
|
self.output_key = output_key or "pooler_output" |
|
elif "llm" in text_encoder_type or "glm" in text_encoder_type: |
|
self.output_key = output_key or "last_hidden_state" |
|
else: |
|
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}") |
|
|
|
self.model, self.model_path = load_text_encoder( |
|
text_encoder_type=self.text_encoder_type, text_encoder_path=self.model_path, text_encoder_dtype=text_encoder_dtype |
|
) |
|
self.dtype = self.model.dtype |
|
|
|
self.tokenizer, self.tokenizer_path = load_tokenizer( |
|
tokenizer_type=self.tokenizer_type, tokenizer_path=self.tokenizer_path, padding_side="right" |
|
) |
|
|
|
def __repr__(self): |
|
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})" |
|
|
|
@property |
|
def device(self): |
|
return self.model.device |
|
|
|
@staticmethod |
|
def apply_text_to_template(text, template, prevent_empty_text=True): |
|
""" |
|
Apply text to template. |
|
|
|
Args: |
|
text (str): Input text. |
|
template (str or list): Template string or list of chat conversation. |
|
prevent_empty_text (bool): If Ture, we will prevent the user text from being empty |
|
by adding a space. Defaults to True. |
|
""" |
|
if isinstance(template, str): |
|
|
|
return template.format(text) |
|
else: |
|
raise TypeError(f"Unsupported template type: {type(template)}") |
|
|
|
def text2tokens(self, text, data_type="image"): |
|
""" |
|
Tokenize the input text. |
|
|
|
Args: |
|
text (str or list): Input text. |
|
""" |
|
tokenize_input_type = "str" |
|
if self.use_template: |
|
if data_type == "image": |
|
prompt_template = self.prompt_template["template"] |
|
elif data_type == "video": |
|
prompt_template = self.prompt_template_video["template"] |
|
else: |
|
raise ValueError(f"Unsupported data type: {data_type}") |
|
if isinstance(text, (list, tuple)): |
|
text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text] |
|
if isinstance(text[0], list): |
|
tokenize_input_type = "list" |
|
elif isinstance(text, str): |
|
text = self.apply_text_to_template(text, prompt_template) |
|
if isinstance(text, list): |
|
tokenize_input_type = "list" |
|
else: |
|
raise TypeError(f"Unsupported text type: {type(text)}") |
|
|
|
kwargs = dict( |
|
truncation=True, |
|
max_length=self.max_length, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
if tokenize_input_type == "str": |
|
return self.tokenizer( |
|
text, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_attention_mask=True, |
|
**kwargs, |
|
) |
|
elif tokenize_input_type == "list": |
|
return self.tokenizer.apply_chat_template( |
|
text, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
**kwargs, |
|
) |
|
else: |
|
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}") |
|
|
|
def encode( |
|
self, |
|
batch_encoding, |
|
use_attention_mask=None, |
|
output_hidden_states=False, |
|
do_sample=None, |
|
hidden_state_skip_layer=None, |
|
return_texts=False, |
|
data_type="image", |
|
device=None, |
|
): |
|
""" |
|
Args: |
|
batch_encoding (dict): Batch encoding from tokenizer. |
|
use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask. |
|
Defaults to None. |
|
output_hidden_states (bool): Whether to output hidden states. If False, return the value of |
|
self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer, |
|
output_hidden_states will be set True. Defaults to False. |
|
do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None. |
|
When self.produce is False, do_sample is set to True by default. |
|
hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer. |
|
If None, self.output_key will be used. Defaults to None. |
|
return_texts (bool): Whether to return the decoded texts. Defaults to False. |
|
""" |
|
device = self.model.device if device is None else device |
|
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask) |
|
hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer) |
|
do_sample = use_default(do_sample, not self.reproduce) |
|
attention_mask = batch_encoding["attention_mask"].to(device) if use_attention_mask else None |
|
outputs = self.model( |
|
input_ids=batch_encoding["input_ids"].to(device), |
|
attention_mask=attention_mask, |
|
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None, |
|
) |
|
if hidden_state_skip_layer is not None: |
|
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)] |
|
|
|
|
|
if hidden_state_skip_layer > 0 and self.apply_final_norm: |
|
last_hidden_state = self.model.final_layer_norm(last_hidden_state) |
|
else: |
|
last_hidden_state = outputs[self.output_key] |
|
|
|
|
|
if self.use_template: |
|
if data_type == "image": |
|
crop_start = self.prompt_template.get("crop_start", -1) |
|
elif data_type == "video": |
|
crop_start = self.prompt_template_video.get("crop_start", -1) |
|
else: |
|
raise ValueError(f"Unsupported data type: {data_type}") |
|
if crop_start > 0: |
|
last_hidden_state = last_hidden_state[:, crop_start:] |
|
attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None |
|
|
|
if output_hidden_states: |
|
return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states) |
|
return TextEncoderModelOutput(last_hidden_state, attention_mask) |
|
|
|
def forward( |
|
self, |
|
text, |
|
use_attention_mask=None, |
|
output_hidden_states=False, |
|
do_sample=False, |
|
hidden_state_skip_layer=None, |
|
return_texts=False, |
|
): |
|
batch_encoding = self.text2tokens(text) |
|
return self.encode( |
|
batch_encoding, |
|
use_attention_mask=use_attention_mask, |
|
output_hidden_states=output_hidden_states, |
|
do_sample=do_sample, |
|
hidden_state_skip_layer=hidden_state_skip_layer, |
|
return_texts=return_texts, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def load_text_encoder_1( |
|
text_encoder_dir: str, device: torch.device, fp8_llm: bool, dtype: Optional[Union[str, torch.dtype]] = None |
|
) -> TextEncoder: |
|
text_encoder_dtype = dtype or torch.float16 |
|
text_encoder_type = "llm" |
|
text_len = 256 |
|
hidden_state_skip_layer = 2 |
|
apply_final_norm = False |
|
reproduce = False |
|
|
|
prompt_template = "dit-llm-encode" |
|
prompt_template = PROMPT_TEMPLATE[prompt_template] |
|
prompt_template_video = "dit-llm-encode-video" |
|
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] |
|
|
|
crop_start = prompt_template_video["crop_start"] |
|
max_length = text_len + crop_start |
|
|
|
text_encoder_1 = TextEncoder( |
|
text_encoder_type=text_encoder_type, |
|
max_length=max_length, |
|
text_encoder_dtype=text_encoder_dtype, |
|
text_encoder_path=text_encoder_dir, |
|
tokenizer_type=text_encoder_type, |
|
prompt_template=prompt_template, |
|
prompt_template_video=prompt_template_video, |
|
hidden_state_skip_layer=hidden_state_skip_layer, |
|
apply_final_norm=apply_final_norm, |
|
reproduce=reproduce, |
|
) |
|
text_encoder_1.eval() |
|
|
|
if fp8_llm: |
|
org_dtype = text_encoder_1.dtype |
|
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn") |
|
text_encoder_1.to(device=device, dtype=torch.float8_e4m3fn) |
|
|
|
|
|
def prepare_fp8(llama_model: LlamaModel, target_dtype): |
|
def forward_hook(module): |
|
def forward(hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon) |
|
return module.weight.to(input_dtype) * hidden_states.to(input_dtype) |
|
|
|
return forward |
|
|
|
for module in llama_model.modules(): |
|
if module.__class__.__name__ in ["Embedding"]: |
|
|
|
module.to(target_dtype) |
|
if module.__class__.__name__ in ["LlamaRMSNorm"]: |
|
|
|
module.forward = forward_hook(module) |
|
|
|
prepare_fp8(text_encoder_1.model, org_dtype) |
|
else: |
|
text_encoder_1.to(device=device) |
|
|
|
return text_encoder_1 |
|
|
|
|
|
def load_text_encoder_2( |
|
text_encoder_dir: str, device: torch.device, dtype: Optional[Union[str, torch.dtype]] = None |
|
) -> TextEncoder: |
|
text_encoder_dtype = dtype or torch.float16 |
|
reproduce = False |
|
|
|
text_encoder_2_type = "clipL" |
|
text_len_2 = 77 |
|
|
|
text_encoder_2 = TextEncoder( |
|
text_encoder_type=text_encoder_2_type, |
|
max_length=text_len_2, |
|
text_encoder_dtype=text_encoder_dtype, |
|
text_encoder_path=text_encoder_dir, |
|
tokenizer_type=text_encoder_2_type, |
|
reproduce=reproduce, |
|
) |
|
text_encoder_2.eval() |
|
|
|
text_encoder_2.to(device=device) |
|
|
|
return text_encoder_2 |
|
|
|
|
|
|
|
|