File size: 18,517 Bytes
c43f41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from dataclasses import dataclass
from typing import Optional, Tuple, Union
from copy import deepcopy

import torch
import torch.nn as nn
from transformers import CLIPTextModel, CLIPTokenizer, AutoTokenizer, AutoModel
from transformers.utils import ModelOutput
from transformers.models.llama import LlamaModel

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


# When using decoder-only models, we must provide a prompt template to instruct the text encoder
# on how to generate the text.
# --------------------------------------------------------------------
PROMPT_TEMPLATE_ENCODE = (
    "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
    "quantity, text, spatial relationships of the objects and background:<|eot_id|>"
    "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)
PROMPT_TEMPLATE_ENCODE_VIDEO = (
    "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
    "1. The main content and theme of the video."
    "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
    "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
    "4. background environment, light, style and atmosphere."
    "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
    "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)

NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"

PROMPT_TEMPLATE = {
    "dit-llm-encode": {
        "template": PROMPT_TEMPLATE_ENCODE,
        "crop_start": 36,
    },
    "dit-llm-encode-video": {
        "template": PROMPT_TEMPLATE_ENCODE_VIDEO,
        "crop_start": 95,
    },
}


def use_default(value, default):
    return value if value is not None else default


def load_text_encoder(
    text_encoder_type: str,
    text_encoder_path: str,
    text_encoder_dtype: Optional[Union[str, torch.dtype]] = None,
):
    logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")

    # reduce peak memory usage by specifying the dtype of the model
    dtype = text_encoder_dtype
    if text_encoder_type == "clipL":
        text_encoder = CLIPTextModel.from_pretrained(text_encoder_path, torch_dtype=dtype)
        text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm
    elif text_encoder_type == "llm":
        text_encoder = AutoModel.from_pretrained(text_encoder_path, low_cpu_mem_usage=True, torch_dtype=dtype)
        text_encoder.final_layer_norm = text_encoder.norm
    else:
        raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
    # from_pretrained will ensure that the model is in eval mode.

    if dtype is not None:
        text_encoder = text_encoder.to(dtype=dtype)

    text_encoder.requires_grad_(False)

    logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
    return text_encoder, text_encoder_path


def load_tokenizer(tokenizer_type, tokenizer_path=None, padding_side="right"):
    logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")

    if tokenizer_type == "clipL":
        tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77)
    elif tokenizer_type == "llm":
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, padding_side=padding_side)
    else:
        raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")

    return tokenizer, tokenizer_path


@dataclass
class TextEncoderModelOutput(ModelOutput):
    """
    Base class for model's outputs that also contains a pooling of the last hidden states.

    Args:
        hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
        hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        text_outputs (`list`, *optional*, returned when `return_texts=True` is passed):
            List of decoded texts.
    """

    hidden_state: torch.FloatTensor = None
    attention_mask: Optional[torch.LongTensor] = None
    hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
    text_outputs: Optional[list] = None


class TextEncoder(nn.Module):
    def __init__(
        self,
        text_encoder_type: str,
        max_length: int,
        text_encoder_dtype: Optional[Union[str, torch.dtype]] = None,
        text_encoder_path: Optional[str] = None,
        tokenizer_type: Optional[str] = None,
        tokenizer_path: Optional[str] = None,
        output_key: Optional[str] = None,
        use_attention_mask: bool = True,
        input_max_length: Optional[int] = None,
        prompt_template: Optional[dict] = None,
        prompt_template_video: Optional[dict] = None,
        hidden_state_skip_layer: Optional[int] = None,
        apply_final_norm: bool = False,
        reproduce: bool = False,
    ):
        super().__init__()
        self.text_encoder_type = text_encoder_type
        self.max_length = max_length
        # self.precision = text_encoder_precision
        self.model_path = text_encoder_path
        self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
        self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
        self.use_attention_mask = use_attention_mask
        if prompt_template_video is not None:
            assert use_attention_mask is True, "Attention mask is True required when training videos."
        self.input_max_length = input_max_length if input_max_length is not None else max_length
        self.prompt_template = prompt_template
        self.prompt_template_video = prompt_template_video
        self.hidden_state_skip_layer = hidden_state_skip_layer
        self.apply_final_norm = apply_final_norm
        self.reproduce = reproduce

        self.use_template = self.prompt_template is not None
        if self.use_template:
            assert (
                isinstance(self.prompt_template, dict) and "template" in self.prompt_template
            ), f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
            assert "{}" in str(self.prompt_template["template"]), (
                "`prompt_template['template']` must contain a placeholder `{}` for the input text, "
                f"got {self.prompt_template['template']}"
            )

        self.use_video_template = self.prompt_template_video is not None
        if self.use_video_template:
            if self.prompt_template_video is not None:
                assert (
                    isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video
                ), f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
            assert "{}" in str(self.prompt_template_video["template"]), (
                "`prompt_template_video['template']` must contain a placeholder `{}` for the input text, "
                f"got {self.prompt_template_video['template']}"
            )

        if "t5" in text_encoder_type:
            self.output_key = output_key or "last_hidden_state"
        elif "clip" in text_encoder_type:
            self.output_key = output_key or "pooler_output"
        elif "llm" in text_encoder_type or "glm" in text_encoder_type:
            self.output_key = output_key or "last_hidden_state"
        else:
            raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")

        self.model, self.model_path = load_text_encoder(
            text_encoder_type=self.text_encoder_type, text_encoder_path=self.model_path, text_encoder_dtype=text_encoder_dtype
        )
        self.dtype = self.model.dtype

        self.tokenizer, self.tokenizer_path = load_tokenizer(
            tokenizer_type=self.tokenizer_type, tokenizer_path=self.tokenizer_path, padding_side="right"
        )

    def __repr__(self):
        return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"

    @property
    def device(self):
        return self.model.device

    @staticmethod
    def apply_text_to_template(text, template, prevent_empty_text=True):
        """
        Apply text to template.

        Args:
            text (str): Input text.
            template (str or list): Template string or list of chat conversation.
            prevent_empty_text (bool): If Ture, we will prevent the user text from being empty
                by adding a space. Defaults to True.
        """
        if isinstance(template, str):
            # Will send string to tokenizer. Used for llm
            return template.format(text)
        else:
            raise TypeError(f"Unsupported template type: {type(template)}")

    def text2tokens(self, text, data_type="image"):
        """
        Tokenize the input text.

        Args:
            text (str or list): Input text.
        """
        tokenize_input_type = "str"
        if self.use_template:
            if data_type == "image":
                prompt_template = self.prompt_template["template"]
            elif data_type == "video":
                prompt_template = self.prompt_template_video["template"]
            else:
                raise ValueError(f"Unsupported data type: {data_type}")
            if isinstance(text, (list, tuple)):
                text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
                if isinstance(text[0], list):
                    tokenize_input_type = "list"
            elif isinstance(text, str):
                text = self.apply_text_to_template(text, prompt_template)
                if isinstance(text, list):
                    tokenize_input_type = "list"
            else:
                raise TypeError(f"Unsupported text type: {type(text)}")

        kwargs = dict(
            truncation=True,
            max_length=self.max_length,
            padding="max_length",
            return_tensors="pt",
        )
        if tokenize_input_type == "str":
            return self.tokenizer(
                text,
                return_length=False,
                return_overflowing_tokens=False,
                return_attention_mask=True,
                **kwargs,
            )
        elif tokenize_input_type == "list":
            return self.tokenizer.apply_chat_template(
                text,
                add_generation_prompt=True,
                tokenize=True,
                return_dict=True,
                **kwargs,
            )
        else:
            raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")

    def encode(
        self,
        batch_encoding,
        use_attention_mask=None,
        output_hidden_states=False,
        do_sample=None,
        hidden_state_skip_layer=None,
        return_texts=False,
        data_type="image",
        device=None,
    ):
        """
        Args:
            batch_encoding (dict): Batch encoding from tokenizer.
            use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask.
                Defaults to None.
            output_hidden_states (bool): Whether to output hidden states. If False, return the value of
                self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer,
                output_hidden_states will be set True. Defaults to False.
            do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None.
                When self.produce is False, do_sample is set to True by default.
            hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer.
                If None, self.output_key will be used. Defaults to None.
            return_texts (bool): Whether to return the decoded texts. Defaults to False.
        """
        device = self.model.device if device is None else device
        use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
        hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
        do_sample = use_default(do_sample, not self.reproduce)
        attention_mask = batch_encoding["attention_mask"].to(device) if use_attention_mask else None
        outputs = self.model(
            input_ids=batch_encoding["input_ids"].to(device),
            attention_mask=attention_mask,
            output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
        )
        if hidden_state_skip_layer is not None:
            last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
            # Real last hidden state already has layer norm applied. So here we only apply it
            # for intermediate layers.
            if hidden_state_skip_layer > 0 and self.apply_final_norm:
                last_hidden_state = self.model.final_layer_norm(last_hidden_state)
        else:
            last_hidden_state = outputs[self.output_key]

        # Remove hidden states of instruction tokens, only keep prompt tokens.
        if self.use_template:
            if data_type == "image":
                crop_start = self.prompt_template.get("crop_start", -1)
            elif data_type == "video":
                crop_start = self.prompt_template_video.get("crop_start", -1)
            else:
                raise ValueError(f"Unsupported data type: {data_type}")
            if crop_start > 0:
                last_hidden_state = last_hidden_state[:, crop_start:]
                attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None

        if output_hidden_states:
            return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
        return TextEncoderModelOutput(last_hidden_state, attention_mask)

    def forward(
        self,
        text,
        use_attention_mask=None,
        output_hidden_states=False,
        do_sample=False,
        hidden_state_skip_layer=None,
        return_texts=False,
    ):
        batch_encoding = self.text2tokens(text)
        return self.encode(
            batch_encoding,
            use_attention_mask=use_attention_mask,
            output_hidden_states=output_hidden_states,
            do_sample=do_sample,
            hidden_state_skip_layer=hidden_state_skip_layer,
            return_texts=return_texts,
        )


# region HunyanVideo architecture


def load_text_encoder_1(
    text_encoder_dir: str, device: torch.device, fp8_llm: bool, dtype: Optional[Union[str, torch.dtype]] = None
) -> TextEncoder:
    text_encoder_dtype = dtype or torch.float16
    text_encoder_type = "llm"
    text_len = 256
    hidden_state_skip_layer = 2
    apply_final_norm = False
    reproduce = False

    prompt_template = "dit-llm-encode"
    prompt_template = PROMPT_TEMPLATE[prompt_template]
    prompt_template_video = "dit-llm-encode-video"
    prompt_template_video = PROMPT_TEMPLATE[prompt_template_video]

    crop_start = prompt_template_video["crop_start"]  # .get("crop_start", 0)
    max_length = text_len + crop_start

    text_encoder_1 = TextEncoder(
        text_encoder_type=text_encoder_type,
        max_length=max_length,
        text_encoder_dtype=text_encoder_dtype,
        text_encoder_path=text_encoder_dir,
        tokenizer_type=text_encoder_type,
        prompt_template=prompt_template,
        prompt_template_video=prompt_template_video,
        hidden_state_skip_layer=hidden_state_skip_layer,
        apply_final_norm=apply_final_norm,
        reproduce=reproduce,
    )
    text_encoder_1.eval()

    if fp8_llm:
        org_dtype = text_encoder_1.dtype
        logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
        text_encoder_1.to(device=device, dtype=torch.float8_e4m3fn)

        # prepare LLM for fp8
        def prepare_fp8(llama_model: LlamaModel, target_dtype):
            def forward_hook(module):
                def forward(hidden_states):
                    input_dtype = hidden_states.dtype
                    hidden_states = hidden_states.to(torch.float32)
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
                    hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
                    return module.weight.to(input_dtype) * hidden_states.to(input_dtype)

                return forward

            for module in llama_model.modules():
                if module.__class__.__name__ in ["Embedding"]:
                    # print("set", module.__class__.__name__, "to", target_dtype)
                    module.to(target_dtype)
                if module.__class__.__name__ in ["LlamaRMSNorm"]:
                    # print("set", module.__class__.__name__, "hooks")
                    module.forward = forward_hook(module)

        prepare_fp8(text_encoder_1.model, org_dtype)
    else:
        text_encoder_1.to(device=device)

    return text_encoder_1


def load_text_encoder_2(
    text_encoder_dir: str, device: torch.device, dtype: Optional[Union[str, torch.dtype]] = None
) -> TextEncoder:
    text_encoder_dtype = dtype or torch.float16
    reproduce = False

    text_encoder_2_type = "clipL"
    text_len_2 = 77

    text_encoder_2 = TextEncoder(
        text_encoder_type=text_encoder_2_type,
        max_length=text_len_2,
        text_encoder_dtype=text_encoder_dtype,
        text_encoder_path=text_encoder_dir,
        tokenizer_type=text_encoder_2_type,
        reproduce=reproduce,
    )
    text_encoder_2.eval()

    text_encoder_2.to(device=device)

    return text_encoder_2


# endregion