|
--- |
|
library_name: transformers |
|
license: gemma |
|
base_model: vidore/colpaligemma-3b-pt-448-base |
|
tags: |
|
- colpali |
|
- generated_from_trainer |
|
model-index: |
|
- name: finetune_colpali_v1_2-german_ver3-4bit |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetune_colpali_v1_2-german_ver3-4bit |
|
|
|
This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the German_docx dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0815 |
|
- Model Preparation Time: 0.0061 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |
|
|:-------------:|:------:|:----:|:---------------:|:----------------------:| |
|
| No log | 0.0146 | 1 | 0.3622 | 0.0061 | |
|
| 1.6392 | 0.1460 | 10 | 0.3430 | 0.0061 | |
|
| 1.1999 | 0.2920 | 20 | 0.3049 | 0.0061 | |
|
| 1.2826 | 0.4380 | 30 | 0.2768 | 0.0061 | |
|
| 0.7583 | 0.5839 | 40 | 0.2492 | 0.0061 | |
|
| 0.603 | 0.7299 | 50 | 0.2258 | 0.0061 | |
|
| 1.014 | 0.8759 | 60 | 0.1958 | 0.0061 | |
|
| 0.8131 | 1.0219 | 70 | 0.1688 | 0.0061 | |
|
| 0.6346 | 1.1679 | 80 | 0.1591 | 0.0061 | |
|
| 0.5089 | 1.3139 | 90 | 0.1502 | 0.0061 | |
|
| 0.4616 | 1.4599 | 100 | 0.1341 | 0.0061 | |
|
| 0.4498 | 1.6058 | 110 | 0.1136 | 0.0061 | |
|
| 0.4422 | 1.7518 | 120 | 0.1062 | 0.0061 | |
|
| 0.3519 | 1.8978 | 130 | 0.0989 | 0.0061 | |
|
| 0.2382 | 2.0438 | 140 | 0.0925 | 0.0061 | |
|
| 0.242 | 2.1898 | 150 | 0.0894 | 0.0061 | |
|
| 0.3462 | 2.3358 | 160 | 0.0907 | 0.0061 | |
|
| 0.1371 | 2.4818 | 170 | 0.0862 | 0.0061 | |
|
| 0.2691 | 2.6277 | 180 | 0.0838 | 0.0061 | |
|
| 0.0869 | 2.7737 | 190 | 0.0833 | 0.0061 | |
|
| 0.3401 | 2.9197 | 200 | 0.0815 | 0.0061 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.3.1 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.1 |
|
|