detr-resnet-50-dc5-fashionpedia-finetuned
This model is a fine-tuned version of facebook/detr-resnet-50-dc5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4165
- Map: 0.0214
- Map 50: 0.0712
- Map 75: 0.0069
- Map Small: 0.0
- Map Medium: 0.0239
- Map Large: 0.0282
- Mar 1: 0.0082
- Mar 10: 0.0476
- Mar 100: 0.1041
- Mar Small: 0.0
- Mar Medium: 0.1227
- Mar Large: 0.1664
- Map Table: 0.0
- Mar 100 Table: 0.0
- Map Table column: 0.0622
- Mar 100 Table column: 0.2797
- Map Table column header: 0.0
- Mar 100 Table column header: 0.0
- Map Table projected row header: 0.0
- Mar 100 Table projected row header: 0.0
- Map Table row: 0.0661
- Mar 100 Table row: 0.3448
- Map Table spanning cell: 0.0
- Mar 100 Table spanning cell: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Table | Mar 100 Table | Map Table column | Mar 100 Table column | Map Table column header | Mar 100 Table column header | Map Table projected row header | Mar 100 Table projected row header | Map Table row | Mar 100 Table row | Map Table spanning cell | Mar 100 Table spanning cell |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.4882 | 0.9804 | 50 | 4.8033 | 0.0001 | 0.0003 | 0.0 | 0.0 | 0.0001 | 0.0005 | 0.0001 | 0.0008 | 0.0034 | 0.0 | 0.0015 | 0.0369 | 0.0 | 0.0 | 0.0 | 0.0063 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0142 | 0.0 | 0.0 |
3.8236 | 1.9608 | 100 | 3.9505 | 0.0011 | 0.0052 | 0.0002 | 0.0 | 0.003 | 0.0008 | 0.0005 | 0.0046 | 0.0229 | 0.0 | 0.026 | 0.0669 | 0.0 | 0.0 | 0.0001 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0066 | 0.1369 | 0.0 | 0.0 |
4.1025 | 2.9412 | 150 | 3.3041 | 0.0021 | 0.0092 | 0.0004 | 0.0 | 0.0047 | 0.0013 | 0.0009 | 0.0081 | 0.0236 | 0.0 | 0.027 | 0.0647 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0123 | 0.1416 | 0.0 | 0.0 |
2.7239 | 3.9216 | 200 | 3.0607 | 0.0035 | 0.0131 | 0.001 | 0.0 | 0.0098 | 0.0007 | 0.0017 | 0.0098 | 0.0324 | 0.0 | 0.0388 | 0.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0212 | 0.1943 | 0.0 | 0.0 |
3.0469 | 4.9020 | 250 | 2.9285 | 0.0056 | 0.0211 | 0.0017 | 0.0 | 0.0115 | 0.0028 | 0.003 | 0.0137 | 0.0427 | 0.0 | 0.0493 | 0.1066 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0335 | 0.2562 | 0.0 | 0.0 |
3.3639 | 5.8824 | 300 | 2.8313 | 0.0094 | 0.0294 | 0.0035 | 0.0 | 0.015 | 0.0023 | 0.004 | 0.019 | 0.0553 | 0.0 | 0.0695 | 0.0414 | 0.0 | 0.0 | 0.0018 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0544 | 0.3219 | 0.0 | 0.0 |
3.8375 | 6.8627 | 350 | 2.7181 | 0.0119 | 0.0399 | 0.0038 | 0.0 | 0.0181 | 0.0061 | 0.0032 | 0.029 | 0.0654 | 0.0 | 0.0875 | 0.0491 | 0.0 | 0.0 | 0.0115 | 0.0701 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0597 | 0.3224 | 0.0 | 0.0 |
2.8298 | 7.8431 | 400 | 2.7012 | 0.0124 | 0.046 | 0.003 | 0.0 | 0.0208 | 0.0101 | 0.0043 | 0.033 | 0.0609 | 0.0 | 0.0784 | 0.0915 | 0.0 | 0.0 | 0.0264 | 0.1207 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0478 | 0.2445 | 0.0 | 0.0 |
2.843 | 8.8235 | 450 | 2.6117 | 0.0182 | 0.0606 | 0.005 | 0.0 | 0.0235 | 0.0177 | 0.0088 | 0.0431 | 0.0866 | 0.0 | 0.1023 | 0.1309 | 0.0 | 0.0 | 0.0465 | 0.1889 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0627 | 0.3304 | 0.0 | 0.0 |
2.3581 | 9.8039 | 500 | 2.5716 | 0.0196 | 0.0663 | 0.0068 | 0.0 | 0.0255 | 0.0172 | 0.0072 | 0.046 | 0.0881 | 0.0 | 0.1027 | 0.1261 | 0.0 | 0.0 | 0.0451 | 0.2162 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0722 | 0.3125 | 0.0 | 0.0 |
2.9131 | 10.7843 | 550 | 2.5624 | 0.0176 | 0.0616 | 0.0048 | 0.0 | 0.0229 | 0.0252 | 0.0085 | 0.0455 | 0.0956 | 0.0 | 0.1121 | 0.1939 | 0.0 | 0.0 | 0.0571 | 0.3122 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0487 | 0.2617 | 0.0 | 0.0 |
2.7047 | 11.7647 | 600 | 2.4800 | 0.0212 | 0.0711 | 0.0058 | 0.0 | 0.0271 | 0.0248 | 0.0067 | 0.0479 | 0.1031 | 0.0 | 0.1242 | 0.175 | 0.0 | 0.0 | 0.059 | 0.2982 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0682 | 0.3207 | 0.0 | 0.0 |
2.1587 | 12.7451 | 650 | 2.5019 | 0.0214 | 0.0702 | 0.0068 | 0.0 | 0.0261 | 0.0256 | 0.0082 | 0.051 | 0.1038 | 0.0 | 0.1233 | 0.1539 | 0.0 | 0.0 | 0.0643 | 0.2908 | 0.0 | 0.0 | 0.0 | 0.0 | 0.064 | 0.3319 | 0.0 | 0.0 |
2.6573 | 13.7255 | 700 | 2.4376 | 0.0228 | 0.0773 | 0.0071 | 0.0 | 0.0274 | 0.0301 | 0.0074 | 0.0508 | 0.1088 | 0.0 | 0.13 | 0.1836 | 0.0 | 0.0 | 0.0686 | 0.3155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0679 | 0.3375 | 0.0 | 0.0 |
2.9342 | 14.7059 | 750 | 2.4634 | 0.0214 | 0.0696 | 0.0087 | 0.0 | 0.0248 | 0.0255 | 0.0078 | 0.0468 | 0.1049 | 0.0 | 0.1236 | 0.1631 | 0.0 | 0.0 | 0.0616 | 0.2771 | 0.0 | 0.0 | 0.0 | 0.0 | 0.067 | 0.3522 | 0.0 | 0.0 |
2.2428 | 15.6863 | 800 | 2.4568 | 0.0234 | 0.073 | 0.0091 | 0.0 | 0.0266 | 0.0268 | 0.007 | 0.0495 | 0.1062 | 0.0 | 0.1262 | 0.1349 | 0.0 | 0.0 | 0.0571 | 0.2686 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0834 | 0.3685 | 0.0 | 0.0 |
2.2051 | 16.6667 | 850 | 2.4144 | 0.0228 | 0.0711 | 0.0092 | 0.0 | 0.0254 | 0.031 | 0.009 | 0.0506 | 0.1082 | 0.0 | 0.127 | 0.1682 | 0.0 | 0.0 | 0.0648 | 0.3004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0721 | 0.3491 | 0.0 | 0.0 |
2.5091 | 17.6471 | 900 | 2.4344 | 0.0223 | 0.0725 | 0.0079 | 0.0 | 0.0252 | 0.0267 | 0.0076 | 0.0488 | 0.1057 | 0.0 | 0.1255 | 0.146 | 0.0 | 0.0 | 0.0607 | 0.2793 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0729 | 0.355 | 0.0 | 0.0 |
2.5155 | 18.6275 | 950 | 2.4167 | 0.0216 | 0.0715 | 0.0072 | 0.0 | 0.0237 | 0.0289 | 0.0082 | 0.0491 | 0.104 | 0.0 | 0.1217 | 0.1688 | 0.0 | 0.0 | 0.062 | 0.2823 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0673 | 0.342 | 0.0 | 0.0 |
2.1455 | 19.6078 | 1000 | 2.4165 | 0.0214 | 0.0712 | 0.0069 | 0.0 | 0.0239 | 0.0282 | 0.0082 | 0.0476 | 0.1041 | 0.0 | 0.1227 | 0.1664 | 0.0 | 0.0 | 0.0622 | 0.2797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0661 | 0.3448 | 0.0 | 0.0 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for sumitD/detr-resnet-50-dc5-fashionpedia-finetuned
Base model
facebook/detr-resnet-50-dc5