detr-resnet-50-dc5-fashionpedia-finetuned

This model is a fine-tuned version of facebook/detr-resnet-50-dc5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4165
  • Map: 0.0214
  • Map 50: 0.0712
  • Map 75: 0.0069
  • Map Small: 0.0
  • Map Medium: 0.0239
  • Map Large: 0.0282
  • Mar 1: 0.0082
  • Mar 10: 0.0476
  • Mar 100: 0.1041
  • Mar Small: 0.0
  • Mar Medium: 0.1227
  • Mar Large: 0.1664
  • Map Table: 0.0
  • Mar 100 Table: 0.0
  • Map Table column: 0.0622
  • Mar 100 Table column: 0.2797
  • Map Table column header: 0.0
  • Mar 100 Table column header: 0.0
  • Map Table projected row header: 0.0
  • Mar 100 Table projected row header: 0.0
  • Map Table row: 0.0661
  • Mar 100 Table row: 0.3448
  • Map Table spanning cell: 0.0
  • Mar 100 Table spanning cell: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Table Mar 100 Table Map Table column Mar 100 Table column Map Table column header Mar 100 Table column header Map Table projected row header Mar 100 Table projected row header Map Table row Mar 100 Table row Map Table spanning cell Mar 100 Table spanning cell
5.4882 0.9804 50 4.8033 0.0001 0.0003 0.0 0.0 0.0001 0.0005 0.0001 0.0008 0.0034 0.0 0.0015 0.0369 0.0 0.0 0.0 0.0063 0.0 0.0 0.0 0.0 0.0003 0.0142 0.0 0.0
3.8236 1.9608 100 3.9505 0.0011 0.0052 0.0002 0.0 0.003 0.0008 0.0005 0.0046 0.0229 0.0 0.026 0.0669 0.0 0.0 0.0001 0.0004 0.0 0.0 0.0 0.0 0.0066 0.1369 0.0 0.0
4.1025 2.9412 150 3.3041 0.0021 0.0092 0.0004 0.0 0.0047 0.0013 0.0009 0.0081 0.0236 0.0 0.027 0.0647 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0123 0.1416 0.0 0.0
2.7239 3.9216 200 3.0607 0.0035 0.0131 0.001 0.0 0.0098 0.0007 0.0017 0.0098 0.0324 0.0 0.0388 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0212 0.1943 0.0 0.0
3.0469 4.9020 250 2.9285 0.0056 0.0211 0.0017 0.0 0.0115 0.0028 0.003 0.0137 0.0427 0.0 0.0493 0.1066 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0335 0.2562 0.0 0.0
3.3639 5.8824 300 2.8313 0.0094 0.0294 0.0035 0.0 0.015 0.0023 0.004 0.019 0.0553 0.0 0.0695 0.0414 0.0 0.0 0.0018 0.01 0.0 0.0 0.0 0.0 0.0544 0.3219 0.0 0.0
3.8375 6.8627 350 2.7181 0.0119 0.0399 0.0038 0.0 0.0181 0.0061 0.0032 0.029 0.0654 0.0 0.0875 0.0491 0.0 0.0 0.0115 0.0701 0.0 0.0 0.0 0.0 0.0597 0.3224 0.0 0.0
2.8298 7.8431 400 2.7012 0.0124 0.046 0.003 0.0 0.0208 0.0101 0.0043 0.033 0.0609 0.0 0.0784 0.0915 0.0 0.0 0.0264 0.1207 0.0 0.0 0.0 0.0 0.0478 0.2445 0.0 0.0
2.843 8.8235 450 2.6117 0.0182 0.0606 0.005 0.0 0.0235 0.0177 0.0088 0.0431 0.0866 0.0 0.1023 0.1309 0.0 0.0 0.0465 0.1889 0.0 0.0 0.0 0.0 0.0627 0.3304 0.0 0.0
2.3581 9.8039 500 2.5716 0.0196 0.0663 0.0068 0.0 0.0255 0.0172 0.0072 0.046 0.0881 0.0 0.1027 0.1261 0.0 0.0 0.0451 0.2162 0.0 0.0 0.0 0.0 0.0722 0.3125 0.0 0.0
2.9131 10.7843 550 2.5624 0.0176 0.0616 0.0048 0.0 0.0229 0.0252 0.0085 0.0455 0.0956 0.0 0.1121 0.1939 0.0 0.0 0.0571 0.3122 0.0 0.0 0.0 0.0 0.0487 0.2617 0.0 0.0
2.7047 11.7647 600 2.4800 0.0212 0.0711 0.0058 0.0 0.0271 0.0248 0.0067 0.0479 0.1031 0.0 0.1242 0.175 0.0 0.0 0.059 0.2982 0.0 0.0 0.0 0.0 0.0682 0.3207 0.0 0.0
2.1587 12.7451 650 2.5019 0.0214 0.0702 0.0068 0.0 0.0261 0.0256 0.0082 0.051 0.1038 0.0 0.1233 0.1539 0.0 0.0 0.0643 0.2908 0.0 0.0 0.0 0.0 0.064 0.3319 0.0 0.0
2.6573 13.7255 700 2.4376 0.0228 0.0773 0.0071 0.0 0.0274 0.0301 0.0074 0.0508 0.1088 0.0 0.13 0.1836 0.0 0.0 0.0686 0.3155 0.0 0.0 0.0 0.0 0.0679 0.3375 0.0 0.0
2.9342 14.7059 750 2.4634 0.0214 0.0696 0.0087 0.0 0.0248 0.0255 0.0078 0.0468 0.1049 0.0 0.1236 0.1631 0.0 0.0 0.0616 0.2771 0.0 0.0 0.0 0.0 0.067 0.3522 0.0 0.0
2.2428 15.6863 800 2.4568 0.0234 0.073 0.0091 0.0 0.0266 0.0268 0.007 0.0495 0.1062 0.0 0.1262 0.1349 0.0 0.0 0.0571 0.2686 0.0 0.0 0.0 0.0 0.0834 0.3685 0.0 0.0
2.2051 16.6667 850 2.4144 0.0228 0.0711 0.0092 0.0 0.0254 0.031 0.009 0.0506 0.1082 0.0 0.127 0.1682 0.0 0.0 0.0648 0.3004 0.0 0.0 0.0 0.0 0.0721 0.3491 0.0 0.0
2.5091 17.6471 900 2.4344 0.0223 0.0725 0.0079 0.0 0.0252 0.0267 0.0076 0.0488 0.1057 0.0 0.1255 0.146 0.0 0.0 0.0607 0.2793 0.0 0.0 0.0 0.0 0.0729 0.355 0.0 0.0
2.5155 18.6275 950 2.4167 0.0216 0.0715 0.0072 0.0 0.0237 0.0289 0.0082 0.0491 0.104 0.0 0.1217 0.1688 0.0 0.0 0.062 0.2823 0.0 0.0 0.0 0.0 0.0673 0.342 0.0 0.0
2.1455 19.6078 1000 2.4165 0.0214 0.0712 0.0069 0.0 0.0239 0.0282 0.0082 0.0476 0.1041 0.0 0.1227 0.1664 0.0 0.0 0.0622 0.2797 0.0 0.0 0.0 0.0 0.0661 0.3448 0.0 0.0

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for sumitD/detr-resnet-50-dc5-fashionpedia-finetuned

Finetuned
(29)
this model