layoutlmv3-finetuned-invoice
This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2640
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 800
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.56 | 100 | 2.1602 | 0.1927 | 0.1246 | 0.1514 | 0.4404 |
No log | 3.12 | 200 | 1.3966 | 0.7963 | 0.7656 | 0.7806 | 0.7663 |
No log | 4.69 | 300 | 0.8001 | 0.9852 | 0.9852 | 0.9852 | 0.9371 |
No log | 6.25 | 400 | 0.4385 | 1.0 | 1.0 | 1.0 | 1.0 |
1.4289 | 7.81 | 500 | 0.2640 | 1.0 | 1.0 | 1.0 | 1.0 |
1.4289 | 9.38 | 600 | 0.1747 | 1.0 | 1.0 | 1.0 | 1.0 |
1.4289 | 10.94 | 700 | 0.1377 | 1.0 | 1.0 | 1.0 | 1.0 |
1.4289 | 12.5 | 800 | 0.1270 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for sujankapali/layoutlmv3-finetuned-invoice
Base model
microsoft/layoutlmv3-base