File size: 37,003 Bytes
7c7bce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
2023-10-23 21:43:27,817 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,818 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-23 21:43:27,818 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Train: 3575 sentences
2023-10-23 21:43:27,819 (train_with_dev=False, train_with_test=False)
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Training Params:
2023-10-23 21:43:27,819 - learning_rate: "3e-05"
2023-10-23 21:43:27,819 - mini_batch_size: "8"
2023-10-23 21:43:27,819 - max_epochs: "10"
2023-10-23 21:43:27,819 - shuffle: "True"
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Plugins:
2023-10-23 21:43:27,819 - TensorboardLogger
2023-10-23 21:43:27,819 - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 21:43:27,819 - metric: "('micro avg', 'f1-score')"
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Computation:
2023-10-23 21:43:27,819 - compute on device: cuda:0
2023-10-23 21:43:27,819 - embedding storage: none
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 21:43:31,549 epoch 1 - iter 44/447 - loss 2.59736907 - time (sec): 3.73 - samples/sec: 2232.32 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:43:35,682 epoch 1 - iter 88/447 - loss 1.66480304 - time (sec): 7.86 - samples/sec: 2185.19 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:43:39,656 epoch 1 - iter 132/447 - loss 1.26020851 - time (sec): 11.84 - samples/sec: 2198.48 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:43:43,583 epoch 1 - iter 176/447 - loss 1.03511087 - time (sec): 15.76 - samples/sec: 2203.99 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:43:47,775 epoch 1 - iter 220/447 - loss 0.89283125 - time (sec): 19.95 - samples/sec: 2194.86 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:43:51,681 epoch 1 - iter 264/447 - loss 0.80764086 - time (sec): 23.86 - samples/sec: 2180.36 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:43:55,776 epoch 1 - iter 308/447 - loss 0.73311634 - time (sec): 27.96 - samples/sec: 2167.82 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:43:59,480 epoch 1 - iter 352/447 - loss 0.67644386 - time (sec): 31.66 - samples/sec: 2169.32 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:44:03,410 epoch 1 - iter 396/447 - loss 0.62981661 - time (sec): 35.59 - samples/sec: 2163.10 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:07,550 epoch 1 - iter 440/447 - loss 0.59048312 - time (sec): 39.73 - samples/sec: 2145.47 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:08,172 ----------------------------------------------------------------------------------------------------
2023-10-23 21:44:08,172 EPOCH 1 done: loss 0.5849 - lr: 0.000029
2023-10-23 21:44:13,024 DEV : loss 0.15741746127605438 - f1-score (micro avg) 0.6304
2023-10-23 21:44:13,044 saving best model
2023-10-23 21:44:13,611 ----------------------------------------------------------------------------------------------------
2023-10-23 21:44:17,779 epoch 2 - iter 44/447 - loss 0.18063276 - time (sec): 4.17 - samples/sec: 2257.14 - lr: 0.000030 - momentum: 0.000000
2023-10-23 21:44:21,569 epoch 2 - iter 88/447 - loss 0.18528584 - time (sec): 7.96 - samples/sec: 2187.93 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:25,757 epoch 2 - iter 132/447 - loss 0.16599237 - time (sec): 12.15 - samples/sec: 2182.35 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:29,711 epoch 2 - iter 176/447 - loss 0.15670000 - time (sec): 16.10 - samples/sec: 2169.31 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:33,587 epoch 2 - iter 220/447 - loss 0.15648904 - time (sec): 19.98 - samples/sec: 2181.11 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:44:37,531 epoch 2 - iter 264/447 - loss 0.15443719 - time (sec): 23.92 - samples/sec: 2157.18 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:44:41,316 epoch 2 - iter 308/447 - loss 0.14760432 - time (sec): 27.70 - samples/sec: 2166.92 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:44:45,037 epoch 2 - iter 352/447 - loss 0.14586645 - time (sec): 31.43 - samples/sec: 2162.64 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:49,356 epoch 2 - iter 396/447 - loss 0.14259641 - time (sec): 35.74 - samples/sec: 2167.87 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:53,194 epoch 2 - iter 440/447 - loss 0.14126909 - time (sec): 39.58 - samples/sec: 2155.17 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:53,795 ----------------------------------------------------------------------------------------------------
2023-10-23 21:44:53,795 EPOCH 2 done: loss 0.1402 - lr: 0.000027
2023-10-23 21:45:00,267 DEV : loss 0.13381491601467133 - f1-score (micro avg) 0.7117
2023-10-23 21:45:00,287 saving best model
2023-10-23 21:45:00,985 ----------------------------------------------------------------------------------------------------
2023-10-23 21:45:05,601 epoch 3 - iter 44/447 - loss 0.06751128 - time (sec): 4.62 - samples/sec: 2259.03 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:45:09,604 epoch 3 - iter 88/447 - loss 0.07069500 - time (sec): 8.62 - samples/sec: 2206.18 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:45:13,531 epoch 3 - iter 132/447 - loss 0.07976465 - time (sec): 12.55 - samples/sec: 2175.25 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:45:17,346 epoch 3 - iter 176/447 - loss 0.07651757 - time (sec): 16.36 - samples/sec: 2160.96 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:45:21,434 epoch 3 - iter 220/447 - loss 0.07807169 - time (sec): 20.45 - samples/sec: 2136.55 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:45:25,359 epoch 3 - iter 264/447 - loss 0.07678230 - time (sec): 24.37 - samples/sec: 2141.63 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:45:29,201 epoch 3 - iter 308/447 - loss 0.07502733 - time (sec): 28.22 - samples/sec: 2169.75 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:45:32,828 epoch 3 - iter 352/447 - loss 0.07417559 - time (sec): 31.84 - samples/sec: 2155.29 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:45:36,858 epoch 3 - iter 396/447 - loss 0.07690418 - time (sec): 35.87 - samples/sec: 2139.50 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:45:40,794 epoch 3 - iter 440/447 - loss 0.07512869 - time (sec): 39.81 - samples/sec: 2144.65 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:45:41,344 ----------------------------------------------------------------------------------------------------
2023-10-23 21:45:41,344 EPOCH 3 done: loss 0.0747 - lr: 0.000023
2023-10-23 21:45:47,862 DEV : loss 0.1403728574514389 - f1-score (micro avg) 0.7576
2023-10-23 21:45:47,882 saving best model
2023-10-23 21:45:48,534 ----------------------------------------------------------------------------------------------------
2023-10-23 21:45:52,383 epoch 4 - iter 44/447 - loss 0.04429873 - time (sec): 3.85 - samples/sec: 2190.16 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:45:56,211 epoch 4 - iter 88/447 - loss 0.05556305 - time (sec): 7.68 - samples/sec: 2182.82 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:46:00,413 epoch 4 - iter 132/447 - loss 0.04771936 - time (sec): 11.88 - samples/sec: 2185.70 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:46:04,432 epoch 4 - iter 176/447 - loss 0.04763457 - time (sec): 15.90 - samples/sec: 2148.76 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:46:08,771 epoch 4 - iter 220/447 - loss 0.04883475 - time (sec): 20.24 - samples/sec: 2164.09 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:46:12,638 epoch 4 - iter 264/447 - loss 0.05042629 - time (sec): 24.10 - samples/sec: 2149.11 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:46:16,490 epoch 4 - iter 308/447 - loss 0.04933331 - time (sec): 27.95 - samples/sec: 2138.45 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:46:20,184 epoch 4 - iter 352/447 - loss 0.04993052 - time (sec): 31.65 - samples/sec: 2134.04 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:46:24,364 epoch 4 - iter 396/447 - loss 0.05054757 - time (sec): 35.83 - samples/sec: 2125.87 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:46:28,318 epoch 4 - iter 440/447 - loss 0.04943137 - time (sec): 39.78 - samples/sec: 2133.38 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:46:29,180 ----------------------------------------------------------------------------------------------------
2023-10-23 21:46:29,180 EPOCH 4 done: loss 0.0495 - lr: 0.000020
2023-10-23 21:46:35,657 DEV : loss 0.15535356104373932 - f1-score (micro avg) 0.7538
2023-10-23 21:46:35,677 ----------------------------------------------------------------------------------------------------
2023-10-23 21:46:39,548 epoch 5 - iter 44/447 - loss 0.03078265 - time (sec): 3.87 - samples/sec: 2225.40 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:46:44,002 epoch 5 - iter 88/447 - loss 0.03386077 - time (sec): 8.32 - samples/sec: 2240.13 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:46:47,844 epoch 5 - iter 132/447 - loss 0.02800467 - time (sec): 12.17 - samples/sec: 2207.49 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:46:51,925 epoch 5 - iter 176/447 - loss 0.02859791 - time (sec): 16.25 - samples/sec: 2192.30 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:46:55,830 epoch 5 - iter 220/447 - loss 0.02933140 - time (sec): 20.15 - samples/sec: 2186.28 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:46:59,903 epoch 5 - iter 264/447 - loss 0.03168646 - time (sec): 24.22 - samples/sec: 2165.59 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:47:04,063 epoch 5 - iter 308/447 - loss 0.03078826 - time (sec): 28.38 - samples/sec: 2153.17 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:47:07,934 epoch 5 - iter 352/447 - loss 0.03164438 - time (sec): 32.26 - samples/sec: 2137.69 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:47:11,983 epoch 5 - iter 396/447 - loss 0.03204700 - time (sec): 36.30 - samples/sec: 2133.66 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:47:15,699 epoch 5 - iter 440/447 - loss 0.03119195 - time (sec): 40.02 - samples/sec: 2133.16 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:47:16,246 ----------------------------------------------------------------------------------------------------
2023-10-23 21:47:16,246 EPOCH 5 done: loss 0.0309 - lr: 0.000017
2023-10-23 21:47:22,748 DEV : loss 0.19321992993354797 - f1-score (micro avg) 0.7672
2023-10-23 21:47:22,769 saving best model
2023-10-23 21:47:23,478 ----------------------------------------------------------------------------------------------------
2023-10-23 21:47:27,940 epoch 6 - iter 44/447 - loss 0.02741518 - time (sec): 4.46 - samples/sec: 2090.87 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:47:31,462 epoch 6 - iter 88/447 - loss 0.02648322 - time (sec): 7.98 - samples/sec: 2098.54 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:47:35,446 epoch 6 - iter 132/447 - loss 0.02696457 - time (sec): 11.97 - samples/sec: 2118.34 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:47:40,129 epoch 6 - iter 176/447 - loss 0.02361068 - time (sec): 16.65 - samples/sec: 2081.86 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:47:44,245 epoch 6 - iter 220/447 - loss 0.02276207 - time (sec): 20.77 - samples/sec: 2080.13 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:47:48,072 epoch 6 - iter 264/447 - loss 0.02276839 - time (sec): 24.59 - samples/sec: 2086.22 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:47:51,854 epoch 6 - iter 308/447 - loss 0.02374098 - time (sec): 28.37 - samples/sec: 2087.49 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:47:55,586 epoch 6 - iter 352/447 - loss 0.02378282 - time (sec): 32.11 - samples/sec: 2108.41 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:47:59,400 epoch 6 - iter 396/447 - loss 0.02305597 - time (sec): 35.92 - samples/sec: 2122.86 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:48:03,543 epoch 6 - iter 440/447 - loss 0.02262792 - time (sec): 40.06 - samples/sec: 2126.09 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:48:04,170 ----------------------------------------------------------------------------------------------------
2023-10-23 21:48:04,170 EPOCH 6 done: loss 0.0228 - lr: 0.000013
2023-10-23 21:48:10,648 DEV : loss 0.2212265431880951 - f1-score (micro avg) 0.7681
2023-10-23 21:48:10,668 saving best model
2023-10-23 21:48:11,380 ----------------------------------------------------------------------------------------------------
2023-10-23 21:48:15,630 epoch 7 - iter 44/447 - loss 0.02011576 - time (sec): 4.25 - samples/sec: 2161.60 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:48:20,236 epoch 7 - iter 88/447 - loss 0.02058168 - time (sec): 8.86 - samples/sec: 2129.94 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:48:24,023 epoch 7 - iter 132/447 - loss 0.01673971 - time (sec): 12.64 - samples/sec: 2161.41 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:48:27,774 epoch 7 - iter 176/447 - loss 0.01674535 - time (sec): 16.39 - samples/sec: 2137.16 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:48:31,840 epoch 7 - iter 220/447 - loss 0.01634720 - time (sec): 20.46 - samples/sec: 2107.89 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:48:35,738 epoch 7 - iter 264/447 - loss 0.01512947 - time (sec): 24.36 - samples/sec: 2110.43 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:48:39,714 epoch 7 - iter 308/447 - loss 0.01474730 - time (sec): 28.33 - samples/sec: 2126.89 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:48:43,633 epoch 7 - iter 352/447 - loss 0.01413429 - time (sec): 32.25 - samples/sec: 2123.06 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:48:47,542 epoch 7 - iter 396/447 - loss 0.01551299 - time (sec): 36.16 - samples/sec: 2132.18 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:48:51,431 epoch 7 - iter 440/447 - loss 0.01500511 - time (sec): 40.05 - samples/sec: 2128.34 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:48:52,048 ----------------------------------------------------------------------------------------------------
2023-10-23 21:48:52,049 EPOCH 7 done: loss 0.0151 - lr: 0.000010
2023-10-23 21:48:58,550 DEV : loss 0.20411019027233124 - f1-score (micro avg) 0.7805
2023-10-23 21:48:58,570 saving best model
2023-10-23 21:48:59,286 ----------------------------------------------------------------------------------------------------
2023-10-23 21:49:03,512 epoch 8 - iter 44/447 - loss 0.01270864 - time (sec): 4.23 - samples/sec: 2032.12 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:49:07,306 epoch 8 - iter 88/447 - loss 0.01253401 - time (sec): 8.02 - samples/sec: 2083.82 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:49:11,270 epoch 8 - iter 132/447 - loss 0.01166606 - time (sec): 11.98 - samples/sec: 2081.78 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:49:15,017 epoch 8 - iter 176/447 - loss 0.01169154 - time (sec): 15.73 - samples/sec: 2096.62 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:49:19,083 epoch 8 - iter 220/447 - loss 0.01146001 - time (sec): 19.80 - samples/sec: 2091.88 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:49:22,864 epoch 8 - iter 264/447 - loss 0.01101559 - time (sec): 23.58 - samples/sec: 2107.80 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:49:27,278 epoch 8 - iter 308/447 - loss 0.01131528 - time (sec): 27.99 - samples/sec: 2116.82 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:49:31,122 epoch 8 - iter 352/447 - loss 0.01058721 - time (sec): 31.84 - samples/sec: 2113.39 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:49:35,175 epoch 8 - iter 396/447 - loss 0.01001339 - time (sec): 35.89 - samples/sec: 2129.54 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:49:39,230 epoch 8 - iter 440/447 - loss 0.00967542 - time (sec): 39.94 - samples/sec: 2134.83 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:49:39,875 ----------------------------------------------------------------------------------------------------
2023-10-23 21:49:39,876 EPOCH 8 done: loss 0.0095 - lr: 0.000007
2023-10-23 21:49:46,389 DEV : loss 0.225086510181427 - f1-score (micro avg) 0.7789
2023-10-23 21:49:46,409 ----------------------------------------------------------------------------------------------------
2023-10-23 21:49:50,173 epoch 9 - iter 44/447 - loss 0.00403557 - time (sec): 3.76 - samples/sec: 2081.58 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:49:54,550 epoch 9 - iter 88/447 - loss 0.00765470 - time (sec): 8.14 - samples/sec: 2163.07 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:49:58,621 epoch 9 - iter 132/447 - loss 0.00920501 - time (sec): 12.21 - samples/sec: 2172.70 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:50:02,655 epoch 9 - iter 176/447 - loss 0.00917938 - time (sec): 16.24 - samples/sec: 2153.71 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:50:06,801 epoch 9 - iter 220/447 - loss 0.00894625 - time (sec): 20.39 - samples/sec: 2138.41 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:50:11,253 epoch 9 - iter 264/447 - loss 0.00790337 - time (sec): 24.84 - samples/sec: 2127.58 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:50:15,046 epoch 9 - iter 308/447 - loss 0.00736902 - time (sec): 28.64 - samples/sec: 2131.12 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:50:18,757 epoch 9 - iter 352/447 - loss 0.00748375 - time (sec): 32.35 - samples/sec: 2130.89 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:50:22,404 epoch 9 - iter 396/447 - loss 0.00686718 - time (sec): 35.99 - samples/sec: 2128.26 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:50:26,194 epoch 9 - iter 440/447 - loss 0.00697380 - time (sec): 39.78 - samples/sec: 2134.97 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:50:26,915 ----------------------------------------------------------------------------------------------------
2023-10-23 21:50:26,916 EPOCH 9 done: loss 0.0068 - lr: 0.000003
2023-10-23 21:50:33,435 DEV : loss 0.23983320593833923 - f1-score (micro avg) 0.7897
2023-10-23 21:50:33,456 saving best model
2023-10-23 21:50:34,253 ----------------------------------------------------------------------------------------------------
2023-10-23 21:50:38,619 epoch 10 - iter 44/447 - loss 0.00392863 - time (sec): 4.37 - samples/sec: 2090.26 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:50:42,547 epoch 10 - iter 88/447 - loss 0.00267496 - time (sec): 8.29 - samples/sec: 2111.21 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:50:46,964 epoch 10 - iter 132/447 - loss 0.00256060 - time (sec): 12.71 - samples/sec: 2134.72 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:50:50,766 epoch 10 - iter 176/447 - loss 0.00265105 - time (sec): 16.51 - samples/sec: 2144.00 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:50:54,684 epoch 10 - iter 220/447 - loss 0.00294022 - time (sec): 20.43 - samples/sec: 2130.59 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:50:58,612 epoch 10 - iter 264/447 - loss 0.00407805 - time (sec): 24.36 - samples/sec: 2146.37 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:51:02,387 epoch 10 - iter 308/447 - loss 0.00366515 - time (sec): 28.13 - samples/sec: 2145.46 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:51:06,524 epoch 10 - iter 352/447 - loss 0.00414494 - time (sec): 32.27 - samples/sec: 2151.05 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:51:10,214 epoch 10 - iter 396/447 - loss 0.00427295 - time (sec): 35.96 - samples/sec: 2143.80 - lr: 0.000000 - momentum: 0.000000
2023-10-23 21:51:14,104 epoch 10 - iter 440/447 - loss 0.00403470 - time (sec): 39.85 - samples/sec: 2138.07 - lr: 0.000000 - momentum: 0.000000
2023-10-23 21:51:14,719 ----------------------------------------------------------------------------------------------------
2023-10-23 21:51:14,719 EPOCH 10 done: loss 0.0040 - lr: 0.000000
2023-10-23 21:51:20,939 DEV : loss 0.24832327663898468 - f1-score (micro avg) 0.7863
2023-10-23 21:51:21,516 ----------------------------------------------------------------------------------------------------
2023-10-23 21:51:21,517 Loading model from best epoch ...
2023-10-23 21:51:23,587 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-10-23 21:51:28,141
Results:
- F-score (micro) 0.7529
- F-score (macro) 0.664
- Accuracy 0.6222
By class:
precision recall f1-score support
loc 0.8486 0.8557 0.8521 596
pers 0.6675 0.7658 0.7133 333
org 0.5254 0.4697 0.4960 132
prod 0.6977 0.4545 0.5505 66
time 0.7234 0.6939 0.7083 49
micro avg 0.7481 0.7577 0.7529 1176
macro avg 0.6925 0.6479 0.6640 1176
weighted avg 0.7474 0.7577 0.7499 1176
2023-10-23 21:51:28,141 ----------------------------------------------------------------------------------------------------
|