File size: 37,003 Bytes
7c7bce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
2023-10-23 21:43:27,817 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,818 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 21:43:27,818 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
 - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Train:  3575 sentences
2023-10-23 21:43:27,819         (train_with_dev=False, train_with_test=False)
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Training Params:
2023-10-23 21:43:27,819  - learning_rate: "3e-05" 
2023-10-23 21:43:27,819  - mini_batch_size: "8"
2023-10-23 21:43:27,819  - max_epochs: "10"
2023-10-23 21:43:27,819  - shuffle: "True"
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Plugins:
2023-10-23 21:43:27,819  - TensorboardLogger
2023-10-23 21:43:27,819  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 21:43:27,819  - metric: "('micro avg', 'f1-score')"
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Computation:
2023-10-23 21:43:27,819  - compute on device: cuda:0
2023-10-23 21:43:27,819  - embedding storage: none
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
2023-10-23 21:43:27,819 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 21:43:31,549 epoch 1 - iter 44/447 - loss 2.59736907 - time (sec): 3.73 - samples/sec: 2232.32 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:43:35,682 epoch 1 - iter 88/447 - loss 1.66480304 - time (sec): 7.86 - samples/sec: 2185.19 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:43:39,656 epoch 1 - iter 132/447 - loss 1.26020851 - time (sec): 11.84 - samples/sec: 2198.48 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:43:43,583 epoch 1 - iter 176/447 - loss 1.03511087 - time (sec): 15.76 - samples/sec: 2203.99 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:43:47,775 epoch 1 - iter 220/447 - loss 0.89283125 - time (sec): 19.95 - samples/sec: 2194.86 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:43:51,681 epoch 1 - iter 264/447 - loss 0.80764086 - time (sec): 23.86 - samples/sec: 2180.36 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:43:55,776 epoch 1 - iter 308/447 - loss 0.73311634 - time (sec): 27.96 - samples/sec: 2167.82 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:43:59,480 epoch 1 - iter 352/447 - loss 0.67644386 - time (sec): 31.66 - samples/sec: 2169.32 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:44:03,410 epoch 1 - iter 396/447 - loss 0.62981661 - time (sec): 35.59 - samples/sec: 2163.10 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:07,550 epoch 1 - iter 440/447 - loss 0.59048312 - time (sec): 39.73 - samples/sec: 2145.47 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:08,172 ----------------------------------------------------------------------------------------------------
2023-10-23 21:44:08,172 EPOCH 1 done: loss 0.5849 - lr: 0.000029
2023-10-23 21:44:13,024 DEV : loss 0.15741746127605438 - f1-score (micro avg)  0.6304
2023-10-23 21:44:13,044 saving best model
2023-10-23 21:44:13,611 ----------------------------------------------------------------------------------------------------
2023-10-23 21:44:17,779 epoch 2 - iter 44/447 - loss 0.18063276 - time (sec): 4.17 - samples/sec: 2257.14 - lr: 0.000030 - momentum: 0.000000
2023-10-23 21:44:21,569 epoch 2 - iter 88/447 - loss 0.18528584 - time (sec): 7.96 - samples/sec: 2187.93 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:25,757 epoch 2 - iter 132/447 - loss 0.16599237 - time (sec): 12.15 - samples/sec: 2182.35 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:29,711 epoch 2 - iter 176/447 - loss 0.15670000 - time (sec): 16.10 - samples/sec: 2169.31 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:44:33,587 epoch 2 - iter 220/447 - loss 0.15648904 - time (sec): 19.98 - samples/sec: 2181.11 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:44:37,531 epoch 2 - iter 264/447 - loss 0.15443719 - time (sec): 23.92 - samples/sec: 2157.18 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:44:41,316 epoch 2 - iter 308/447 - loss 0.14760432 - time (sec): 27.70 - samples/sec: 2166.92 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:44:45,037 epoch 2 - iter 352/447 - loss 0.14586645 - time (sec): 31.43 - samples/sec: 2162.64 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:49,356 epoch 2 - iter 396/447 - loss 0.14259641 - time (sec): 35.74 - samples/sec: 2167.87 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:53,194 epoch 2 - iter 440/447 - loss 0.14126909 - time (sec): 39.58 - samples/sec: 2155.17 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:44:53,795 ----------------------------------------------------------------------------------------------------
2023-10-23 21:44:53,795 EPOCH 2 done: loss 0.1402 - lr: 0.000027
2023-10-23 21:45:00,267 DEV : loss 0.13381491601467133 - f1-score (micro avg)  0.7117
2023-10-23 21:45:00,287 saving best model
2023-10-23 21:45:00,985 ----------------------------------------------------------------------------------------------------
2023-10-23 21:45:05,601 epoch 3 - iter 44/447 - loss 0.06751128 - time (sec): 4.62 - samples/sec: 2259.03 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:45:09,604 epoch 3 - iter 88/447 - loss 0.07069500 - time (sec): 8.62 - samples/sec: 2206.18 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:45:13,531 epoch 3 - iter 132/447 - loss 0.07976465 - time (sec): 12.55 - samples/sec: 2175.25 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:45:17,346 epoch 3 - iter 176/447 - loss 0.07651757 - time (sec): 16.36 - samples/sec: 2160.96 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:45:21,434 epoch 3 - iter 220/447 - loss 0.07807169 - time (sec): 20.45 - samples/sec: 2136.55 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:45:25,359 epoch 3 - iter 264/447 - loss 0.07678230 - time (sec): 24.37 - samples/sec: 2141.63 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:45:29,201 epoch 3 - iter 308/447 - loss 0.07502733 - time (sec): 28.22 - samples/sec: 2169.75 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:45:32,828 epoch 3 - iter 352/447 - loss 0.07417559 - time (sec): 31.84 - samples/sec: 2155.29 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:45:36,858 epoch 3 - iter 396/447 - loss 0.07690418 - time (sec): 35.87 - samples/sec: 2139.50 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:45:40,794 epoch 3 - iter 440/447 - loss 0.07512869 - time (sec): 39.81 - samples/sec: 2144.65 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:45:41,344 ----------------------------------------------------------------------------------------------------
2023-10-23 21:45:41,344 EPOCH 3 done: loss 0.0747 - lr: 0.000023
2023-10-23 21:45:47,862 DEV : loss 0.1403728574514389 - f1-score (micro avg)  0.7576
2023-10-23 21:45:47,882 saving best model
2023-10-23 21:45:48,534 ----------------------------------------------------------------------------------------------------
2023-10-23 21:45:52,383 epoch 4 - iter 44/447 - loss 0.04429873 - time (sec): 3.85 - samples/sec: 2190.16 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:45:56,211 epoch 4 - iter 88/447 - loss 0.05556305 - time (sec): 7.68 - samples/sec: 2182.82 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:46:00,413 epoch 4 - iter 132/447 - loss 0.04771936 - time (sec): 11.88 - samples/sec: 2185.70 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:46:04,432 epoch 4 - iter 176/447 - loss 0.04763457 - time (sec): 15.90 - samples/sec: 2148.76 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:46:08,771 epoch 4 - iter 220/447 - loss 0.04883475 - time (sec): 20.24 - samples/sec: 2164.09 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:46:12,638 epoch 4 - iter 264/447 - loss 0.05042629 - time (sec): 24.10 - samples/sec: 2149.11 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:46:16,490 epoch 4 - iter 308/447 - loss 0.04933331 - time (sec): 27.95 - samples/sec: 2138.45 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:46:20,184 epoch 4 - iter 352/447 - loss 0.04993052 - time (sec): 31.65 - samples/sec: 2134.04 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:46:24,364 epoch 4 - iter 396/447 - loss 0.05054757 - time (sec): 35.83 - samples/sec: 2125.87 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:46:28,318 epoch 4 - iter 440/447 - loss 0.04943137 - time (sec): 39.78 - samples/sec: 2133.38 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:46:29,180 ----------------------------------------------------------------------------------------------------
2023-10-23 21:46:29,180 EPOCH 4 done: loss 0.0495 - lr: 0.000020
2023-10-23 21:46:35,657 DEV : loss 0.15535356104373932 - f1-score (micro avg)  0.7538
2023-10-23 21:46:35,677 ----------------------------------------------------------------------------------------------------
2023-10-23 21:46:39,548 epoch 5 - iter 44/447 - loss 0.03078265 - time (sec): 3.87 - samples/sec: 2225.40 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:46:44,002 epoch 5 - iter 88/447 - loss 0.03386077 - time (sec): 8.32 - samples/sec: 2240.13 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:46:47,844 epoch 5 - iter 132/447 - loss 0.02800467 - time (sec): 12.17 - samples/sec: 2207.49 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:46:51,925 epoch 5 - iter 176/447 - loss 0.02859791 - time (sec): 16.25 - samples/sec: 2192.30 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:46:55,830 epoch 5 - iter 220/447 - loss 0.02933140 - time (sec): 20.15 - samples/sec: 2186.28 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:46:59,903 epoch 5 - iter 264/447 - loss 0.03168646 - time (sec): 24.22 - samples/sec: 2165.59 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:47:04,063 epoch 5 - iter 308/447 - loss 0.03078826 - time (sec): 28.38 - samples/sec: 2153.17 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:47:07,934 epoch 5 - iter 352/447 - loss 0.03164438 - time (sec): 32.26 - samples/sec: 2137.69 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:47:11,983 epoch 5 - iter 396/447 - loss 0.03204700 - time (sec): 36.30 - samples/sec: 2133.66 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:47:15,699 epoch 5 - iter 440/447 - loss 0.03119195 - time (sec): 40.02 - samples/sec: 2133.16 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:47:16,246 ----------------------------------------------------------------------------------------------------
2023-10-23 21:47:16,246 EPOCH 5 done: loss 0.0309 - lr: 0.000017
2023-10-23 21:47:22,748 DEV : loss 0.19321992993354797 - f1-score (micro avg)  0.7672
2023-10-23 21:47:22,769 saving best model
2023-10-23 21:47:23,478 ----------------------------------------------------------------------------------------------------
2023-10-23 21:47:27,940 epoch 6 - iter 44/447 - loss 0.02741518 - time (sec): 4.46 - samples/sec: 2090.87 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:47:31,462 epoch 6 - iter 88/447 - loss 0.02648322 - time (sec): 7.98 - samples/sec: 2098.54 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:47:35,446 epoch 6 - iter 132/447 - loss 0.02696457 - time (sec): 11.97 - samples/sec: 2118.34 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:47:40,129 epoch 6 - iter 176/447 - loss 0.02361068 - time (sec): 16.65 - samples/sec: 2081.86 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:47:44,245 epoch 6 - iter 220/447 - loss 0.02276207 - time (sec): 20.77 - samples/sec: 2080.13 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:47:48,072 epoch 6 - iter 264/447 - loss 0.02276839 - time (sec): 24.59 - samples/sec: 2086.22 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:47:51,854 epoch 6 - iter 308/447 - loss 0.02374098 - time (sec): 28.37 - samples/sec: 2087.49 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:47:55,586 epoch 6 - iter 352/447 - loss 0.02378282 - time (sec): 32.11 - samples/sec: 2108.41 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:47:59,400 epoch 6 - iter 396/447 - loss 0.02305597 - time (sec): 35.92 - samples/sec: 2122.86 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:48:03,543 epoch 6 - iter 440/447 - loss 0.02262792 - time (sec): 40.06 - samples/sec: 2126.09 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:48:04,170 ----------------------------------------------------------------------------------------------------
2023-10-23 21:48:04,170 EPOCH 6 done: loss 0.0228 - lr: 0.000013
2023-10-23 21:48:10,648 DEV : loss 0.2212265431880951 - f1-score (micro avg)  0.7681
2023-10-23 21:48:10,668 saving best model
2023-10-23 21:48:11,380 ----------------------------------------------------------------------------------------------------
2023-10-23 21:48:15,630 epoch 7 - iter 44/447 - loss 0.02011576 - time (sec): 4.25 - samples/sec: 2161.60 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:48:20,236 epoch 7 - iter 88/447 - loss 0.02058168 - time (sec): 8.86 - samples/sec: 2129.94 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:48:24,023 epoch 7 - iter 132/447 - loss 0.01673971 - time (sec): 12.64 - samples/sec: 2161.41 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:48:27,774 epoch 7 - iter 176/447 - loss 0.01674535 - time (sec): 16.39 - samples/sec: 2137.16 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:48:31,840 epoch 7 - iter 220/447 - loss 0.01634720 - time (sec): 20.46 - samples/sec: 2107.89 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:48:35,738 epoch 7 - iter 264/447 - loss 0.01512947 - time (sec): 24.36 - samples/sec: 2110.43 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:48:39,714 epoch 7 - iter 308/447 - loss 0.01474730 - time (sec): 28.33 - samples/sec: 2126.89 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:48:43,633 epoch 7 - iter 352/447 - loss 0.01413429 - time (sec): 32.25 - samples/sec: 2123.06 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:48:47,542 epoch 7 - iter 396/447 - loss 0.01551299 - time (sec): 36.16 - samples/sec: 2132.18 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:48:51,431 epoch 7 - iter 440/447 - loss 0.01500511 - time (sec): 40.05 - samples/sec: 2128.34 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:48:52,048 ----------------------------------------------------------------------------------------------------
2023-10-23 21:48:52,049 EPOCH 7 done: loss 0.0151 - lr: 0.000010
2023-10-23 21:48:58,550 DEV : loss 0.20411019027233124 - f1-score (micro avg)  0.7805
2023-10-23 21:48:58,570 saving best model
2023-10-23 21:48:59,286 ----------------------------------------------------------------------------------------------------
2023-10-23 21:49:03,512 epoch 8 - iter 44/447 - loss 0.01270864 - time (sec): 4.23 - samples/sec: 2032.12 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:49:07,306 epoch 8 - iter 88/447 - loss 0.01253401 - time (sec): 8.02 - samples/sec: 2083.82 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:49:11,270 epoch 8 - iter 132/447 - loss 0.01166606 - time (sec): 11.98 - samples/sec: 2081.78 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:49:15,017 epoch 8 - iter 176/447 - loss 0.01169154 - time (sec): 15.73 - samples/sec: 2096.62 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:49:19,083 epoch 8 - iter 220/447 - loss 0.01146001 - time (sec): 19.80 - samples/sec: 2091.88 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:49:22,864 epoch 8 - iter 264/447 - loss 0.01101559 - time (sec): 23.58 - samples/sec: 2107.80 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:49:27,278 epoch 8 - iter 308/447 - loss 0.01131528 - time (sec): 27.99 - samples/sec: 2116.82 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:49:31,122 epoch 8 - iter 352/447 - loss 0.01058721 - time (sec): 31.84 - samples/sec: 2113.39 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:49:35,175 epoch 8 - iter 396/447 - loss 0.01001339 - time (sec): 35.89 - samples/sec: 2129.54 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:49:39,230 epoch 8 - iter 440/447 - loss 0.00967542 - time (sec): 39.94 - samples/sec: 2134.83 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:49:39,875 ----------------------------------------------------------------------------------------------------
2023-10-23 21:49:39,876 EPOCH 8 done: loss 0.0095 - lr: 0.000007
2023-10-23 21:49:46,389 DEV : loss 0.225086510181427 - f1-score (micro avg)  0.7789
2023-10-23 21:49:46,409 ----------------------------------------------------------------------------------------------------
2023-10-23 21:49:50,173 epoch 9 - iter 44/447 - loss 0.00403557 - time (sec): 3.76 - samples/sec: 2081.58 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:49:54,550 epoch 9 - iter 88/447 - loss 0.00765470 - time (sec): 8.14 - samples/sec: 2163.07 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:49:58,621 epoch 9 - iter 132/447 - loss 0.00920501 - time (sec): 12.21 - samples/sec: 2172.70 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:50:02,655 epoch 9 - iter 176/447 - loss 0.00917938 - time (sec): 16.24 - samples/sec: 2153.71 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:50:06,801 epoch 9 - iter 220/447 - loss 0.00894625 - time (sec): 20.39 - samples/sec: 2138.41 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:50:11,253 epoch 9 - iter 264/447 - loss 0.00790337 - time (sec): 24.84 - samples/sec: 2127.58 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:50:15,046 epoch 9 - iter 308/447 - loss 0.00736902 - time (sec): 28.64 - samples/sec: 2131.12 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:50:18,757 epoch 9 - iter 352/447 - loss 0.00748375 - time (sec): 32.35 - samples/sec: 2130.89 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:50:22,404 epoch 9 - iter 396/447 - loss 0.00686718 - time (sec): 35.99 - samples/sec: 2128.26 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:50:26,194 epoch 9 - iter 440/447 - loss 0.00697380 - time (sec): 39.78 - samples/sec: 2134.97 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:50:26,915 ----------------------------------------------------------------------------------------------------
2023-10-23 21:50:26,916 EPOCH 9 done: loss 0.0068 - lr: 0.000003
2023-10-23 21:50:33,435 DEV : loss 0.23983320593833923 - f1-score (micro avg)  0.7897
2023-10-23 21:50:33,456 saving best model
2023-10-23 21:50:34,253 ----------------------------------------------------------------------------------------------------
2023-10-23 21:50:38,619 epoch 10 - iter 44/447 - loss 0.00392863 - time (sec): 4.37 - samples/sec: 2090.26 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:50:42,547 epoch 10 - iter 88/447 - loss 0.00267496 - time (sec): 8.29 - samples/sec: 2111.21 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:50:46,964 epoch 10 - iter 132/447 - loss 0.00256060 - time (sec): 12.71 - samples/sec: 2134.72 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:50:50,766 epoch 10 - iter 176/447 - loss 0.00265105 - time (sec): 16.51 - samples/sec: 2144.00 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:50:54,684 epoch 10 - iter 220/447 - loss 0.00294022 - time (sec): 20.43 - samples/sec: 2130.59 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:50:58,612 epoch 10 - iter 264/447 - loss 0.00407805 - time (sec): 24.36 - samples/sec: 2146.37 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:51:02,387 epoch 10 - iter 308/447 - loss 0.00366515 - time (sec): 28.13 - samples/sec: 2145.46 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:51:06,524 epoch 10 - iter 352/447 - loss 0.00414494 - time (sec): 32.27 - samples/sec: 2151.05 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:51:10,214 epoch 10 - iter 396/447 - loss 0.00427295 - time (sec): 35.96 - samples/sec: 2143.80 - lr: 0.000000 - momentum: 0.000000
2023-10-23 21:51:14,104 epoch 10 - iter 440/447 - loss 0.00403470 - time (sec): 39.85 - samples/sec: 2138.07 - lr: 0.000000 - momentum: 0.000000
2023-10-23 21:51:14,719 ----------------------------------------------------------------------------------------------------
2023-10-23 21:51:14,719 EPOCH 10 done: loss 0.0040 - lr: 0.000000
2023-10-23 21:51:20,939 DEV : loss 0.24832327663898468 - f1-score (micro avg)  0.7863
2023-10-23 21:51:21,516 ----------------------------------------------------------------------------------------------------
2023-10-23 21:51:21,517 Loading model from best epoch ...
2023-10-23 21:51:23,587 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-10-23 21:51:28,141 
Results:
- F-score (micro) 0.7529
- F-score (macro) 0.664
- Accuracy 0.6222

By class:
              precision    recall  f1-score   support

         loc     0.8486    0.8557    0.8521       596
        pers     0.6675    0.7658    0.7133       333
         org     0.5254    0.4697    0.4960       132
        prod     0.6977    0.4545    0.5505        66
        time     0.7234    0.6939    0.7083        49

   micro avg     0.7481    0.7577    0.7529      1176
   macro avg     0.6925    0.6479    0.6640      1176
weighted avg     0.7474    0.7577    0.7499      1176

2023-10-23 21:51:28,141 ----------------------------------------------------------------------------------------------------