Upload ./training.log with huggingface_hub
Browse files- training.log +510 -0
training.log
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 21:43:27,817 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 21:43:27,818 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 21:43:27,818 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 21:43:27,819 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
317 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 21:43:27,819 Train: 3575 sentences
|
319 |
+
2023-10-23 21:43:27,819 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 21:43:27,819 Training Params:
|
322 |
+
2023-10-23 21:43:27,819 - learning_rate: "3e-05"
|
323 |
+
2023-10-23 21:43:27,819 - mini_batch_size: "8"
|
324 |
+
2023-10-23 21:43:27,819 - max_epochs: "10"
|
325 |
+
2023-10-23 21:43:27,819 - shuffle: "True"
|
326 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 21:43:27,819 Plugins:
|
328 |
+
2023-10-23 21:43:27,819 - TensorboardLogger
|
329 |
+
2023-10-23 21:43:27,819 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 21:43:27,819 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 21:43:27,819 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 21:43:27,819 Computation:
|
335 |
+
2023-10-23 21:43:27,819 - compute on device: cuda:0
|
336 |
+
2023-10-23 21:43:27,819 - embedding storage: none
|
337 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 21:43:27,819 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 21:43:27,819 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 21:43:27,819 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 21:43:31,549 epoch 1 - iter 44/447 - loss 2.59736907 - time (sec): 3.73 - samples/sec: 2232.32 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-23 21:43:35,682 epoch 1 - iter 88/447 - loss 1.66480304 - time (sec): 7.86 - samples/sec: 2185.19 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-23 21:43:39,656 epoch 1 - iter 132/447 - loss 1.26020851 - time (sec): 11.84 - samples/sec: 2198.48 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-23 21:43:43,583 epoch 1 - iter 176/447 - loss 1.03511087 - time (sec): 15.76 - samples/sec: 2203.99 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-23 21:43:47,775 epoch 1 - iter 220/447 - loss 0.89283125 - time (sec): 19.95 - samples/sec: 2194.86 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-23 21:43:51,681 epoch 1 - iter 264/447 - loss 0.80764086 - time (sec): 23.86 - samples/sec: 2180.36 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-23 21:43:55,776 epoch 1 - iter 308/447 - loss 0.73311634 - time (sec): 27.96 - samples/sec: 2167.82 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-23 21:43:59,480 epoch 1 - iter 352/447 - loss 0.67644386 - time (sec): 31.66 - samples/sec: 2169.32 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-23 21:44:03,410 epoch 1 - iter 396/447 - loss 0.62981661 - time (sec): 35.59 - samples/sec: 2163.10 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-23 21:44:07,550 epoch 1 - iter 440/447 - loss 0.59048312 - time (sec): 39.73 - samples/sec: 2145.47 - lr: 0.000029 - momentum: 0.000000
|
352 |
+
2023-10-23 21:44:08,172 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 21:44:08,172 EPOCH 1 done: loss 0.5849 - lr: 0.000029
|
354 |
+
2023-10-23 21:44:13,024 DEV : loss 0.15741746127605438 - f1-score (micro avg) 0.6304
|
355 |
+
2023-10-23 21:44:13,044 saving best model
|
356 |
+
2023-10-23 21:44:13,611 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 21:44:17,779 epoch 2 - iter 44/447 - loss 0.18063276 - time (sec): 4.17 - samples/sec: 2257.14 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-23 21:44:21,569 epoch 2 - iter 88/447 - loss 0.18528584 - time (sec): 7.96 - samples/sec: 2187.93 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-23 21:44:25,757 epoch 2 - iter 132/447 - loss 0.16599237 - time (sec): 12.15 - samples/sec: 2182.35 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-23 21:44:29,711 epoch 2 - iter 176/447 - loss 0.15670000 - time (sec): 16.10 - samples/sec: 2169.31 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-23 21:44:33,587 epoch 2 - iter 220/447 - loss 0.15648904 - time (sec): 19.98 - samples/sec: 2181.11 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-23 21:44:37,531 epoch 2 - iter 264/447 - loss 0.15443719 - time (sec): 23.92 - samples/sec: 2157.18 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-23 21:44:41,316 epoch 2 - iter 308/447 - loss 0.14760432 - time (sec): 27.70 - samples/sec: 2166.92 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-23 21:44:45,037 epoch 2 - iter 352/447 - loss 0.14586645 - time (sec): 31.43 - samples/sec: 2162.64 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-23 21:44:49,356 epoch 2 - iter 396/447 - loss 0.14259641 - time (sec): 35.74 - samples/sec: 2167.87 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-23 21:44:53,194 epoch 2 - iter 440/447 - loss 0.14126909 - time (sec): 39.58 - samples/sec: 2155.17 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-23 21:44:53,795 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 21:44:53,795 EPOCH 2 done: loss 0.1402 - lr: 0.000027
|
369 |
+
2023-10-23 21:45:00,267 DEV : loss 0.13381491601467133 - f1-score (micro avg) 0.7117
|
370 |
+
2023-10-23 21:45:00,287 saving best model
|
371 |
+
2023-10-23 21:45:00,985 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 21:45:05,601 epoch 3 - iter 44/447 - loss 0.06751128 - time (sec): 4.62 - samples/sec: 2259.03 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-23 21:45:09,604 epoch 3 - iter 88/447 - loss 0.07069500 - time (sec): 8.62 - samples/sec: 2206.18 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-23 21:45:13,531 epoch 3 - iter 132/447 - loss 0.07976465 - time (sec): 12.55 - samples/sec: 2175.25 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-23 21:45:17,346 epoch 3 - iter 176/447 - loss 0.07651757 - time (sec): 16.36 - samples/sec: 2160.96 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-23 21:45:21,434 epoch 3 - iter 220/447 - loss 0.07807169 - time (sec): 20.45 - samples/sec: 2136.55 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-23 21:45:25,359 epoch 3 - iter 264/447 - loss 0.07678230 - time (sec): 24.37 - samples/sec: 2141.63 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-23 21:45:29,201 epoch 3 - iter 308/447 - loss 0.07502733 - time (sec): 28.22 - samples/sec: 2169.75 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-23 21:45:32,828 epoch 3 - iter 352/447 - loss 0.07417559 - time (sec): 31.84 - samples/sec: 2155.29 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-23 21:45:36,858 epoch 3 - iter 396/447 - loss 0.07690418 - time (sec): 35.87 - samples/sec: 2139.50 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-23 21:45:40,794 epoch 3 - iter 440/447 - loss 0.07512869 - time (sec): 39.81 - samples/sec: 2144.65 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-23 21:45:41,344 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 21:45:41,344 EPOCH 3 done: loss 0.0747 - lr: 0.000023
|
384 |
+
2023-10-23 21:45:47,862 DEV : loss 0.1403728574514389 - f1-score (micro avg) 0.7576
|
385 |
+
2023-10-23 21:45:47,882 saving best model
|
386 |
+
2023-10-23 21:45:48,534 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 21:45:52,383 epoch 4 - iter 44/447 - loss 0.04429873 - time (sec): 3.85 - samples/sec: 2190.16 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-23 21:45:56,211 epoch 4 - iter 88/447 - loss 0.05556305 - time (sec): 7.68 - samples/sec: 2182.82 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-23 21:46:00,413 epoch 4 - iter 132/447 - loss 0.04771936 - time (sec): 11.88 - samples/sec: 2185.70 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-23 21:46:04,432 epoch 4 - iter 176/447 - loss 0.04763457 - time (sec): 15.90 - samples/sec: 2148.76 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-23 21:46:08,771 epoch 4 - iter 220/447 - loss 0.04883475 - time (sec): 20.24 - samples/sec: 2164.09 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-23 21:46:12,638 epoch 4 - iter 264/447 - loss 0.05042629 - time (sec): 24.10 - samples/sec: 2149.11 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-23 21:46:16,490 epoch 4 - iter 308/447 - loss 0.04933331 - time (sec): 27.95 - samples/sec: 2138.45 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-23 21:46:20,184 epoch 4 - iter 352/447 - loss 0.04993052 - time (sec): 31.65 - samples/sec: 2134.04 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-23 21:46:24,364 epoch 4 - iter 396/447 - loss 0.05054757 - time (sec): 35.83 - samples/sec: 2125.87 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-23 21:46:28,318 epoch 4 - iter 440/447 - loss 0.04943137 - time (sec): 39.78 - samples/sec: 2133.38 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-23 21:46:29,180 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 21:46:29,180 EPOCH 4 done: loss 0.0495 - lr: 0.000020
|
399 |
+
2023-10-23 21:46:35,657 DEV : loss 0.15535356104373932 - f1-score (micro avg) 0.7538
|
400 |
+
2023-10-23 21:46:35,677 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-23 21:46:39,548 epoch 5 - iter 44/447 - loss 0.03078265 - time (sec): 3.87 - samples/sec: 2225.40 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-23 21:46:44,002 epoch 5 - iter 88/447 - loss 0.03386077 - time (sec): 8.32 - samples/sec: 2240.13 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-23 21:46:47,844 epoch 5 - iter 132/447 - loss 0.02800467 - time (sec): 12.17 - samples/sec: 2207.49 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-23 21:46:51,925 epoch 5 - iter 176/447 - loss 0.02859791 - time (sec): 16.25 - samples/sec: 2192.30 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-23 21:46:55,830 epoch 5 - iter 220/447 - loss 0.02933140 - time (sec): 20.15 - samples/sec: 2186.28 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-23 21:46:59,903 epoch 5 - iter 264/447 - loss 0.03168646 - time (sec): 24.22 - samples/sec: 2165.59 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-23 21:47:04,063 epoch 5 - iter 308/447 - loss 0.03078826 - time (sec): 28.38 - samples/sec: 2153.17 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-23 21:47:07,934 epoch 5 - iter 352/447 - loss 0.03164438 - time (sec): 32.26 - samples/sec: 2137.69 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-23 21:47:11,983 epoch 5 - iter 396/447 - loss 0.03204700 - time (sec): 36.30 - samples/sec: 2133.66 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-23 21:47:15,699 epoch 5 - iter 440/447 - loss 0.03119195 - time (sec): 40.02 - samples/sec: 2133.16 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-23 21:47:16,246 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-23 21:47:16,246 EPOCH 5 done: loss 0.0309 - lr: 0.000017
|
413 |
+
2023-10-23 21:47:22,748 DEV : loss 0.19321992993354797 - f1-score (micro avg) 0.7672
|
414 |
+
2023-10-23 21:47:22,769 saving best model
|
415 |
+
2023-10-23 21:47:23,478 ----------------------------------------------------------------------------------------------------
|
416 |
+
2023-10-23 21:47:27,940 epoch 6 - iter 44/447 - loss 0.02741518 - time (sec): 4.46 - samples/sec: 2090.87 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-23 21:47:31,462 epoch 6 - iter 88/447 - loss 0.02648322 - time (sec): 7.98 - samples/sec: 2098.54 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-23 21:47:35,446 epoch 6 - iter 132/447 - loss 0.02696457 - time (sec): 11.97 - samples/sec: 2118.34 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-23 21:47:40,129 epoch 6 - iter 176/447 - loss 0.02361068 - time (sec): 16.65 - samples/sec: 2081.86 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-23 21:47:44,245 epoch 6 - iter 220/447 - loss 0.02276207 - time (sec): 20.77 - samples/sec: 2080.13 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-23 21:47:48,072 epoch 6 - iter 264/447 - loss 0.02276839 - time (sec): 24.59 - samples/sec: 2086.22 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-23 21:47:51,854 epoch 6 - iter 308/447 - loss 0.02374098 - time (sec): 28.37 - samples/sec: 2087.49 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-23 21:47:55,586 epoch 6 - iter 352/447 - loss 0.02378282 - time (sec): 32.11 - samples/sec: 2108.41 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-23 21:47:59,400 epoch 6 - iter 396/447 - loss 0.02305597 - time (sec): 35.92 - samples/sec: 2122.86 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-23 21:48:03,543 epoch 6 - iter 440/447 - loss 0.02262792 - time (sec): 40.06 - samples/sec: 2126.09 - lr: 0.000013 - momentum: 0.000000
|
426 |
+
2023-10-23 21:48:04,170 ----------------------------------------------------------------------------------------------------
|
427 |
+
2023-10-23 21:48:04,170 EPOCH 6 done: loss 0.0228 - lr: 0.000013
|
428 |
+
2023-10-23 21:48:10,648 DEV : loss 0.2212265431880951 - f1-score (micro avg) 0.7681
|
429 |
+
2023-10-23 21:48:10,668 saving best model
|
430 |
+
2023-10-23 21:48:11,380 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-23 21:48:15,630 epoch 7 - iter 44/447 - loss 0.02011576 - time (sec): 4.25 - samples/sec: 2161.60 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-23 21:48:20,236 epoch 7 - iter 88/447 - loss 0.02058168 - time (sec): 8.86 - samples/sec: 2129.94 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-23 21:48:24,023 epoch 7 - iter 132/447 - loss 0.01673971 - time (sec): 12.64 - samples/sec: 2161.41 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-23 21:48:27,774 epoch 7 - iter 176/447 - loss 0.01674535 - time (sec): 16.39 - samples/sec: 2137.16 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-23 21:48:31,840 epoch 7 - iter 220/447 - loss 0.01634720 - time (sec): 20.46 - samples/sec: 2107.89 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-23 21:48:35,738 epoch 7 - iter 264/447 - loss 0.01512947 - time (sec): 24.36 - samples/sec: 2110.43 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-23 21:48:39,714 epoch 7 - iter 308/447 - loss 0.01474730 - time (sec): 28.33 - samples/sec: 2126.89 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-23 21:48:43,633 epoch 7 - iter 352/447 - loss 0.01413429 - time (sec): 32.25 - samples/sec: 2123.06 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-23 21:48:47,542 epoch 7 - iter 396/447 - loss 0.01551299 - time (sec): 36.16 - samples/sec: 2132.18 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-23 21:48:51,431 epoch 7 - iter 440/447 - loss 0.01500511 - time (sec): 40.05 - samples/sec: 2128.34 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-23 21:48:52,048 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-23 21:48:52,049 EPOCH 7 done: loss 0.0151 - lr: 0.000010
|
443 |
+
2023-10-23 21:48:58,550 DEV : loss 0.20411019027233124 - f1-score (micro avg) 0.7805
|
444 |
+
2023-10-23 21:48:58,570 saving best model
|
445 |
+
2023-10-23 21:48:59,286 ----------------------------------------------------------------------------------------------------
|
446 |
+
2023-10-23 21:49:03,512 epoch 8 - iter 44/447 - loss 0.01270864 - time (sec): 4.23 - samples/sec: 2032.12 - lr: 0.000010 - momentum: 0.000000
|
447 |
+
2023-10-23 21:49:07,306 epoch 8 - iter 88/447 - loss 0.01253401 - time (sec): 8.02 - samples/sec: 2083.82 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-23 21:49:11,270 epoch 8 - iter 132/447 - loss 0.01166606 - time (sec): 11.98 - samples/sec: 2081.78 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-23 21:49:15,017 epoch 8 - iter 176/447 - loss 0.01169154 - time (sec): 15.73 - samples/sec: 2096.62 - lr: 0.000009 - momentum: 0.000000
|
450 |
+
2023-10-23 21:49:19,083 epoch 8 - iter 220/447 - loss 0.01146001 - time (sec): 19.80 - samples/sec: 2091.88 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-23 21:49:22,864 epoch 8 - iter 264/447 - loss 0.01101559 - time (sec): 23.58 - samples/sec: 2107.80 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-23 21:49:27,278 epoch 8 - iter 308/447 - loss 0.01131528 - time (sec): 27.99 - samples/sec: 2116.82 - lr: 0.000008 - momentum: 0.000000
|
453 |
+
2023-10-23 21:49:31,122 epoch 8 - iter 352/447 - loss 0.01058721 - time (sec): 31.84 - samples/sec: 2113.39 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-23 21:49:35,175 epoch 8 - iter 396/447 - loss 0.01001339 - time (sec): 35.89 - samples/sec: 2129.54 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-23 21:49:39,230 epoch 8 - iter 440/447 - loss 0.00967542 - time (sec): 39.94 - samples/sec: 2134.83 - lr: 0.000007 - momentum: 0.000000
|
456 |
+
2023-10-23 21:49:39,875 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-23 21:49:39,876 EPOCH 8 done: loss 0.0095 - lr: 0.000007
|
458 |
+
2023-10-23 21:49:46,389 DEV : loss 0.225086510181427 - f1-score (micro avg) 0.7789
|
459 |
+
2023-10-23 21:49:46,409 ----------------------------------------------------------------------------------------------------
|
460 |
+
2023-10-23 21:49:50,173 epoch 9 - iter 44/447 - loss 0.00403557 - time (sec): 3.76 - samples/sec: 2081.58 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-23 21:49:54,550 epoch 9 - iter 88/447 - loss 0.00765470 - time (sec): 8.14 - samples/sec: 2163.07 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-23 21:49:58,621 epoch 9 - iter 132/447 - loss 0.00920501 - time (sec): 12.21 - samples/sec: 2172.70 - lr: 0.000006 - momentum: 0.000000
|
463 |
+
2023-10-23 21:50:02,655 epoch 9 - iter 176/447 - loss 0.00917938 - time (sec): 16.24 - samples/sec: 2153.71 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-23 21:50:06,801 epoch 9 - iter 220/447 - loss 0.00894625 - time (sec): 20.39 - samples/sec: 2138.41 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-23 21:50:11,253 epoch 9 - iter 264/447 - loss 0.00790337 - time (sec): 24.84 - samples/sec: 2127.58 - lr: 0.000005 - momentum: 0.000000
|
466 |
+
2023-10-23 21:50:15,046 epoch 9 - iter 308/447 - loss 0.00736902 - time (sec): 28.64 - samples/sec: 2131.12 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-23 21:50:18,757 epoch 9 - iter 352/447 - loss 0.00748375 - time (sec): 32.35 - samples/sec: 2130.89 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-23 21:50:22,404 epoch 9 - iter 396/447 - loss 0.00686718 - time (sec): 35.99 - samples/sec: 2128.26 - lr: 0.000004 - momentum: 0.000000
|
469 |
+
2023-10-23 21:50:26,194 epoch 9 - iter 440/447 - loss 0.00697380 - time (sec): 39.78 - samples/sec: 2134.97 - lr: 0.000003 - momentum: 0.000000
|
470 |
+
2023-10-23 21:50:26,915 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-23 21:50:26,916 EPOCH 9 done: loss 0.0068 - lr: 0.000003
|
472 |
+
2023-10-23 21:50:33,435 DEV : loss 0.23983320593833923 - f1-score (micro avg) 0.7897
|
473 |
+
2023-10-23 21:50:33,456 saving best model
|
474 |
+
2023-10-23 21:50:34,253 ----------------------------------------------------------------------------------------------------
|
475 |
+
2023-10-23 21:50:38,619 epoch 10 - iter 44/447 - loss 0.00392863 - time (sec): 4.37 - samples/sec: 2090.26 - lr: 0.000003 - momentum: 0.000000
|
476 |
+
2023-10-23 21:50:42,547 epoch 10 - iter 88/447 - loss 0.00267496 - time (sec): 8.29 - samples/sec: 2111.21 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-23 21:50:46,964 epoch 10 - iter 132/447 - loss 0.00256060 - time (sec): 12.71 - samples/sec: 2134.72 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-23 21:50:50,766 epoch 10 - iter 176/447 - loss 0.00265105 - time (sec): 16.51 - samples/sec: 2144.00 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-23 21:50:54,684 epoch 10 - iter 220/447 - loss 0.00294022 - time (sec): 20.43 - samples/sec: 2130.59 - lr: 0.000002 - momentum: 0.000000
|
480 |
+
2023-10-23 21:50:58,612 epoch 10 - iter 264/447 - loss 0.00407805 - time (sec): 24.36 - samples/sec: 2146.37 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-23 21:51:02,387 epoch 10 - iter 308/447 - loss 0.00366515 - time (sec): 28.13 - samples/sec: 2145.46 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-23 21:51:06,524 epoch 10 - iter 352/447 - loss 0.00414494 - time (sec): 32.27 - samples/sec: 2151.05 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-23 21:51:10,214 epoch 10 - iter 396/447 - loss 0.00427295 - time (sec): 35.96 - samples/sec: 2143.80 - lr: 0.000000 - momentum: 0.000000
|
484 |
+
2023-10-23 21:51:14,104 epoch 10 - iter 440/447 - loss 0.00403470 - time (sec): 39.85 - samples/sec: 2138.07 - lr: 0.000000 - momentum: 0.000000
|
485 |
+
2023-10-23 21:51:14,719 ----------------------------------------------------------------------------------------------------
|
486 |
+
2023-10-23 21:51:14,719 EPOCH 10 done: loss 0.0040 - lr: 0.000000
|
487 |
+
2023-10-23 21:51:20,939 DEV : loss 0.24832327663898468 - f1-score (micro avg) 0.7863
|
488 |
+
2023-10-23 21:51:21,516 ----------------------------------------------------------------------------------------------------
|
489 |
+
2023-10-23 21:51:21,517 Loading model from best epoch ...
|
490 |
+
2023-10-23 21:51:23,587 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
491 |
+
2023-10-23 21:51:28,141
|
492 |
+
Results:
|
493 |
+
- F-score (micro) 0.7529
|
494 |
+
- F-score (macro) 0.664
|
495 |
+
- Accuracy 0.6222
|
496 |
+
|
497 |
+
By class:
|
498 |
+
precision recall f1-score support
|
499 |
+
|
500 |
+
loc 0.8486 0.8557 0.8521 596
|
501 |
+
pers 0.6675 0.7658 0.7133 333
|
502 |
+
org 0.5254 0.4697 0.4960 132
|
503 |
+
prod 0.6977 0.4545 0.5505 66
|
504 |
+
time 0.7234 0.6939 0.7083 49
|
505 |
+
|
506 |
+
micro avg 0.7481 0.7577 0.7529 1176
|
507 |
+
macro avg 0.6925 0.6479 0.6640 1176
|
508 |
+
weighted avg 0.7474 0.7577 0.7499 1176
|
509 |
+
|
510 |
+
2023-10-23 21:51:28,141 ----------------------------------------------------------------------------------------------------
|