add visualisation elements
Browse files
app.py
CHANGED
@@ -1,23 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
from sklearn.datasets import load_iris
|
4 |
from sklearn.ensemble import GradientBoostingClassifier
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
7 |
|
8 |
-
# 1. Load dataset
|
9 |
iris = load_iris()
|
10 |
X, y = iris.data, iris.target
|
11 |
feature_names = iris.feature_names
|
12 |
class_names = iris.target_names
|
13 |
|
14 |
-
# Split into train/test
|
15 |
X_train, X_test, y_train, y_test = train_test_split(
|
16 |
X, y, test_size=0.3, random_state=42
|
17 |
)
|
18 |
|
19 |
-
# 2. Define a function that trains & evaluates a model given hyperparameters
|
20 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
|
|
21 |
clf = GradientBoostingClassifier(
|
22 |
learning_rate=learning_rate,
|
23 |
n_estimators=n_estimators,
|
@@ -25,15 +24,31 @@ def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
|
25 |
random_state=42
|
26 |
)
|
27 |
clf.fit(X_train, y_train)
|
28 |
-
y_pred = clf.predict(X_test)
|
29 |
|
|
|
|
|
30 |
accuracy = accuracy_score(y_test, y_pred)
|
31 |
cm = confusion_matrix(y_test, y_pred)
|
|
|
|
|
32 |
cm_display = "\n".join([str(row) for row in cm])
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
# 3. Define a prediction function for user-supplied feature values
|
37 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
38 |
learning_rate, n_estimators, max_depth):
|
39 |
clf = GradientBoostingClassifier(
|
@@ -43,12 +58,10 @@ def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
|
43 |
random_state=42
|
44 |
)
|
45 |
clf.fit(X_train, y_train)
|
46 |
-
|
47 |
user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
48 |
prediction = clf.predict(user_sample)[0]
|
49 |
return f"Predicted species: {class_names[prediction]}"
|
50 |
|
51 |
-
# 4. Build the Gradio interface
|
52 |
with gr.Blocks() as demo:
|
53 |
with gr.Tab("Train & Evaluate"):
|
54 |
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
@@ -58,11 +71,12 @@ with gr.Blocks() as demo:
|
|
58 |
|
59 |
train_button = gr.Button("Train & Evaluate")
|
60 |
output_text = gr.Textbox(label="Results")
|
|
|
61 |
|
62 |
train_button.click(
|
63 |
fn=train_and_evaluate,
|
64 |
inputs=[learning_rate_slider, n_estimators_slider, max_depth_slider],
|
65 |
-
outputs=output_text,
|
66 |
)
|
67 |
|
68 |
with gr.Tab("Predict"):
|
@@ -71,8 +85,7 @@ with gr.Blocks() as demo:
|
|
71 |
sepal_width_input = gr.Number(value=3.5, label=feature_names[1])
|
72 |
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
73 |
petal_width_input = gr.Number(value=0.2, label=feature_names[3])
|
74 |
-
|
75 |
-
# Hyperparams for the model that will do the prediction
|
76 |
learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
77 |
n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
78 |
max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
from sklearn.datasets import load_iris
|
5 |
from sklearn.ensemble import GradientBoostingClassifier
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
8 |
|
|
|
9 |
iris = load_iris()
|
10 |
X, y = iris.data, iris.target
|
11 |
feature_names = iris.feature_names
|
12 |
class_names = iris.target_names
|
13 |
|
|
|
14 |
X_train, X_test, y_train, y_test = train_test_split(
|
15 |
X, y, test_size=0.3, random_state=42
|
16 |
)
|
17 |
|
|
|
18 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
19 |
+
# Train model
|
20 |
clf = GradientBoostingClassifier(
|
21 |
learning_rate=learning_rate,
|
22 |
n_estimators=n_estimators,
|
|
|
24 |
random_state=42
|
25 |
)
|
26 |
clf.fit(X_train, y_train)
|
|
|
27 |
|
28 |
+
# Predict and compute metrics
|
29 |
+
y_pred = clf.predict(X_test)
|
30 |
accuracy = accuracy_score(y_test, y_pred)
|
31 |
cm = confusion_matrix(y_test, y_pred)
|
32 |
+
|
33 |
+
# Convert confusion matrix to readable string
|
34 |
cm_display = "\n".join([str(row) for row in cm])
|
35 |
|
36 |
+
# Create a feature importance bar chart
|
37 |
+
importances = clf.feature_importances_
|
38 |
+
fig, ax = plt.subplots()
|
39 |
+
ax.barh(range(len(feature_names)), importances, color='skyblue')
|
40 |
+
ax.set_yticks(range(len(feature_names)))
|
41 |
+
ax.set_yticklabels(feature_names)
|
42 |
+
ax.set_xlabel("Importance")
|
43 |
+
ax.set_title("Feature Importances (Gradient Boosting)")
|
44 |
+
|
45 |
+
# Convert the Matplotlib figure to a Gradio-readable format
|
46 |
+
# (returns a temporary .png file path)
|
47 |
+
return (
|
48 |
+
f"Accuracy: {accuracy:.3f}\nConfusion Matrix:\n{cm_display}",
|
49 |
+
fig
|
50 |
+
)
|
51 |
|
|
|
52 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
53 |
learning_rate, n_estimators, max_depth):
|
54 |
clf = GradientBoostingClassifier(
|
|
|
58 |
random_state=42
|
59 |
)
|
60 |
clf.fit(X_train, y_train)
|
|
|
61 |
user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
62 |
prediction = clf.predict(user_sample)[0]
|
63 |
return f"Predicted species: {class_names[prediction]}"
|
64 |
|
|
|
65 |
with gr.Blocks() as demo:
|
66 |
with gr.Tab("Train & Evaluate"):
|
67 |
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
|
|
71 |
|
72 |
train_button = gr.Button("Train & Evaluate")
|
73 |
output_text = gr.Textbox(label="Results")
|
74 |
+
output_plot = gr.Plot(label="Feature Importance")
|
75 |
|
76 |
train_button.click(
|
77 |
fn=train_and_evaluate,
|
78 |
inputs=[learning_rate_slider, n_estimators_slider, max_depth_slider],
|
79 |
+
outputs=[output_text, output_plot],
|
80 |
)
|
81 |
|
82 |
with gr.Tab("Predict"):
|
|
|
85 |
sepal_width_input = gr.Number(value=3.5, label=feature_names[1])
|
86 |
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
87 |
petal_width_input = gr.Number(value=0.2, label=feature_names[3])
|
88 |
+
|
|
|
89 |
learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
90 |
n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
91 |
max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|