update gradio syntax for latest versions
Browse files
app.py
CHANGED
@@ -16,9 +16,8 @@ X_train, X_test, y_train, y_test = train_test_split(
|
|
16 |
X, y, test_size=0.3, random_state=42
|
17 |
)
|
18 |
|
19 |
-
# 2. Define a function that
|
20 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
21 |
-
# Train model
|
22 |
clf = GradientBoostingClassifier(
|
23 |
learning_rate=learning_rate,
|
24 |
n_estimators=n_estimators,
|
@@ -26,25 +25,17 @@ def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
|
26 |
random_state=42
|
27 |
)
|
28 |
clf.fit(X_train, y_train)
|
29 |
-
|
30 |
-
# Predict on test data
|
31 |
y_pred = clf.predict(X_test)
|
32 |
|
33 |
-
# Calculate metrics
|
34 |
accuracy = accuracy_score(y_test, y_pred)
|
35 |
cm = confusion_matrix(y_test, y_pred)
|
36 |
-
|
37 |
-
# Convert confusion matrix to a more display-friendly format
|
38 |
-
cm_display = ""
|
39 |
-
for row in cm:
|
40 |
-
cm_display += str(row) + "\n"
|
41 |
|
42 |
return f"Accuracy: {accuracy:.3f}\nConfusion Matrix:\n{cm_display}"
|
43 |
|
44 |
# 3. Define a prediction function for user-supplied feature values
|
45 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
46 |
learning_rate, n_estimators, max_depth):
|
47 |
-
# Train a new model using same hyperparams
|
48 |
clf = GradientBoostingClassifier(
|
49 |
learning_rate=learning_rate,
|
50 |
n_estimators=n_estimators,
|
@@ -53,47 +44,54 @@ def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
|
53 |
)
|
54 |
clf.fit(X_train, y_train)
|
55 |
|
56 |
-
# Predict species
|
57 |
user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
58 |
prediction = clf.predict(user_sample)[0]
|
59 |
return f"Predicted species: {class_names[prediction]}"
|
60 |
|
61 |
# 4. Build the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
# Inputs to tune hyperparameters
|
64 |
-
hyperparam_inputs = [
|
65 |
-
gr.inputs.Slider(0.01, 1.0, step=0.01, default=0.1, label="learning_rate"),
|
66 |
-
gr.inputs.Slider(50, 300, step=50, default=100, label="n_estimators"),
|
67 |
-
gr.inputs.Slider(1, 10, step=1, default=3, label="max_depth")
|
68 |
-
]
|
69 |
-
|
70 |
-
# Button or automatic “live” updates
|
71 |
-
training_interface = gr.Interface(
|
72 |
-
fn=train_and_evaluate,
|
73 |
-
inputs=hyperparam_inputs,
|
74 |
-
outputs="text",
|
75 |
-
title="Gradient Boosting Training and Evaluation",
|
76 |
-
description="Train a GradientBoostingClassifier on the Iris dataset with different hyperparameters."
|
77 |
-
)
|
78 |
-
|
79 |
-
# Inputs for real-time prediction
|
80 |
-
feature_inputs = [
|
81 |
-
gr.inputs.Number(default=5.1, label=feature_names[0]),
|
82 |
-
gr.inputs.Number(default=3.5, label=feature_names[1]),
|
83 |
-
gr.inputs.Number(default=1.4, label=feature_names[2]),
|
84 |
-
gr.inputs.Number(default=0.2, label=feature_names[3])
|
85 |
-
] + hyperparam_inputs
|
86 |
-
|
87 |
-
prediction_interface = gr.Interface(
|
88 |
-
fn=predict_species,
|
89 |
-
inputs=feature_inputs,
|
90 |
-
outputs="text",
|
91 |
-
title="Iris Species Prediction",
|
92 |
-
description="Use a GradientBoostingClassifier to predict Iris species from user input."
|
93 |
-
)
|
94 |
-
|
95 |
-
demo = gr.TabbedInterface([training_interface, prediction_interface],
|
96 |
-
["Train & Evaluate", "Predict"])
|
97 |
-
|
98 |
-
# Launch the Gradio app
|
99 |
demo.launch()
|
|
|
16 |
X, y, test_size=0.3, random_state=42
|
17 |
)
|
18 |
|
19 |
+
# 2. Define a function that trains & evaluates a model given hyperparameters
|
20 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
|
|
21 |
clf = GradientBoostingClassifier(
|
22 |
learning_rate=learning_rate,
|
23 |
n_estimators=n_estimators,
|
|
|
25 |
random_state=42
|
26 |
)
|
27 |
clf.fit(X_train, y_train)
|
|
|
|
|
28 |
y_pred = clf.predict(X_test)
|
29 |
|
|
|
30 |
accuracy = accuracy_score(y_test, y_pred)
|
31 |
cm = confusion_matrix(y_test, y_pred)
|
32 |
+
cm_display = "\n".join([str(row) for row in cm])
|
|
|
|
|
|
|
|
|
33 |
|
34 |
return f"Accuracy: {accuracy:.3f}\nConfusion Matrix:\n{cm_display}"
|
35 |
|
36 |
# 3. Define a prediction function for user-supplied feature values
|
37 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
38 |
learning_rate, n_estimators, max_depth):
|
|
|
39 |
clf = GradientBoostingClassifier(
|
40 |
learning_rate=learning_rate,
|
41 |
n_estimators=n_estimators,
|
|
|
44 |
)
|
45 |
clf.fit(X_train, y_train)
|
46 |
|
|
|
47 |
user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
48 |
prediction = clf.predict(user_sample)[0]
|
49 |
return f"Predicted species: {class_names[prediction]}"
|
50 |
|
51 |
# 4. Build the Gradio interface
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
with gr.Tab("Train & Evaluate"):
|
54 |
+
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
55 |
+
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
56 |
+
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
57 |
+
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
58 |
+
|
59 |
+
train_button = gr.Button("Train & Evaluate")
|
60 |
+
output_text = gr.Textbox(label="Results")
|
61 |
+
|
62 |
+
train_button.click(
|
63 |
+
fn=train_and_evaluate,
|
64 |
+
inputs=[learning_rate_slider, n_estimators_slider, max_depth_slider],
|
65 |
+
outputs=output_text,
|
66 |
+
)
|
67 |
+
|
68 |
+
with gr.Tab("Predict"):
|
69 |
+
gr.Markdown("## Predict Iris Species with GradientBoostingClassifier")
|
70 |
+
sepal_length_input = gr.Number(value=5.1, label=feature_names[0])
|
71 |
+
sepal_width_input = gr.Number(value=3.5, label=feature_names[1])
|
72 |
+
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
73 |
+
petal_width_input = gr.Number(value=0.2, label=feature_names[3])
|
74 |
+
|
75 |
+
# Hyperparams for the model that will do the prediction
|
76 |
+
learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
77 |
+
n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
78 |
+
max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
79 |
+
|
80 |
+
predict_button = gr.Button("Predict")
|
81 |
+
prediction_text = gr.Textbox(label="Prediction")
|
82 |
+
|
83 |
+
predict_button.click(
|
84 |
+
fn=predict_species,
|
85 |
+
inputs=[
|
86 |
+
sepal_length_input,
|
87 |
+
sepal_width_input,
|
88 |
+
petal_length_input,
|
89 |
+
petal_width_input,
|
90 |
+
learning_rate_slider2,
|
91 |
+
n_estimators_slider2,
|
92 |
+
max_depth_slider2,
|
93 |
+
],
|
94 |
+
outputs=prediction_text
|
95 |
+
)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
demo.launch()
|